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Let’s just go ahead and look...The Sky in Gamma Rays

‘ )

e Very Successful Launch! June 11, 2008

e Orbit:
* Altitude: 565 km

* |nclination: 25.6 deg
*x Period: ~90 min

e Turn off through SAA
e Lifetime: 5 years min.
* No expendable '




Fermi Large Area Telescope: Particle Detector in Space

Anti-Coincidence Detector
»4% R.L.

» 89 scintillating tiles
» efficiency (>0.9997) for MIPs

Tracking detector

» 16 tungsten foils
(12x3%R.L.,4x18%R.L.)

» 18 pairs of silicon strip arrays

» 884736 strips (228 micron pitch)

: Calorimeter
Trigger b
»Overall HW Trigger Rate ~few KHz > 8.5 radiation jogaiis

: » 8 layers cesium iodide logs
S oware F e 1536 logs total (1200kg)

» Rate after Ground Cuts: ~few Hz
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Let’s just go ahead and look...

Evidence for an extended source consistent with

a dark matter interpretation:
Hooper & Goodenough, 2010
Hooper & Linden, 2011
Boyarsky et al. 2011

Abazajian & Kaplinghat 2012

Gordon & Macias (2013), Cirelli et al. (2013),
Abazajian et al. (2014), Daylan et al (2014),

Calore et al. (2014), Abazajian et al (2015),
Ackermann et al (2015)
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in gamma rays

1. Galactic diffuse emission via cosmic rays interacting
with:

a. gas ™ pion production, mo — 7y
b. interstellar radiation ® inv. Comp. e* yiow — €* Phigh
c. bremsstrahlung from e*

2. Point like and extended sources: Fermi catalog

3. Isotropic diffuse gamma-ray background

4. Galactic Center Excess



Looks so much like dark matter...
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Thermal WIMP Dark Matter!
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Thermal WIMP Dark Matter!
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GCE as MSPs: Spectral Comparison
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GCE as MSPs: Spectral Comparison
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Thermal WIMP Dark Matter!
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Bright GCE, Dim Dwarts: Strong Tension!
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DM Analysis
k2

Stellar Bulge Gamma-rays Analysis

Freudenreich (1998) Cao+ (2013) Coleman+ (2020)
COBE DIRBE OGLE-III Survey VVV Survey



How much better are stellar maps than DM?
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How much better are stellar maps than DM?
Bulge Maps are > 100 Better Fit: Macias+ 1901.03822
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e Di Mauro (2021)

e claimed that dark-matter templates were preferred for all the
diffuse emission models considered, but only 2 of 7 of those
considered actually did that

e of those, the Di Mauro (2021) did not use ring subdivision
binning that is the standard (Fermi Collab. & beyond) for
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e Cholis et al (2022)

e (laimed better fits for DM than Bulge models for masked data
from the GC, using their diffuse models

e They claimed their diffuse models were better fits than Macias
et al (2017), and was the reason for their DM preterence, but did
not explicitly test this claim

e Didn’t specity their bulge model source
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Stellar-Associated Sources Remain Strongly Preferred
Over Dark Matter

Our work, Song+ 2402.05449, used data provided by McDermott+ to test
previously mentioned problems

e Use previous work’s diffuse models to show that Pohl et al (2022)
provide much better fits to GC diffuse emission than used in
McDermott+ by a level of —2A In £ = 3510 (driven by upper-limit

issue)

e Bulge Models—3 different ones — are preferred over DM by
—2A In £ = 200 to —2A In £ = 500 using the Cholis+ diffuse models

Baseline model Additional source TS Significance
ring-based Coleman20 77.5 1.3 o
ring-based gNFW? 80.7 1.5 o
ring-based NB 299.7 16.2 o

ring-based+NB gNFW? 21.0 2.8 o

ring-based+NB Coleman20 90.9 8.1 o

ring-based+NB+Coleman20 gNFW? 3.5 0.3 o




Oscar Macias Visits Irvine: April 18, 2017
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How much room can be left for dark matter?
Not much!
Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416
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How much room can be left for dark matter?

Not much!
Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416
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How much room can be left for dark matter?

Not much!
Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416
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marginalize over them, as well as the most physical, conservative DM
profiles

Limits are close to that expected from GC by Fermi-LAT Collaboration
(Charles+ arXiv:1605.02016)



But what about Diffuse Model Uncertainties??
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But what about Diffuse Model Uncertainties??
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We took all diffuse models used in GCE analyses into
account...
some much better fits than others...

still report most conservative Iimit
Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416




The Most Stringent, Robust Constraint
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Future Space-Based Indirect Detection?
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Conclusions

The Galactic Center is the best place to look for thermal
WIMP annihilation

The GC is a busy place, but understandable

The GCE in gamma rays is due to stellar remnants,
likely MSPs (Song et al. 2024)

Given this, the GC places the most stringent indirect
detection limits on WIMP DM (Abazajian et al 2020)

But the GC in gamma rays remains very interesting (e.g. 20
evidence for higgsino WIMP DM in GC data analyzed
by Dessert+ arXiv:2207.10090)



