

Tools and techniques in high-precision particle physics: a case study of the LHCb experiment

Marion Lehuraux, from the University of Warwick, on behalf of the LHCb collaboration

EDSU Tool 2024 June 3, 2024

Tools & techniques on LHCb

WARWICK

1 / 11

LHCb in one slide: WHY and HOW ?

- Dedicated heavy flavour experiment @LHC → forward spectrometer
 Study CPV in the beauty sector and rare heavy hadrons decays
- ... but also a general purpose detector in the forward region
 - QCD, heavy ions, electroweak, exotic spectroscopy etc.
- Difficulty: targets branching ratios from $\sim 10^{-9}$ to $\sim 10^{-1}$

LHCb Upgrade I

Why do we need cutting-edge tools & techniques on LHCb ?

• The rich physics program of LHCb for Run 3 and post-Upgrade II

• Cope with the experimental challenges

1	2010			2020					2030						2040					
Run	+				-	-								++	_	_			•	
Long shutdown		1			2				5			4		_	5			6	. !	Δ.
								Upgrade I				T	Upgrade II					1		
Nominal instantaneous luminosity	~4 × 10 ³² cm ² s ⁻¹ ~4 × 10 ³² cm ²		² S ⁻¹	~2.5 × 10 ³³ cm ² s ⁻¹				~1.5	× 10 ³	10 ³⁴ cm ² s ⁻¹			4							
Recorded luminosity		~3 fb ⁻¹		~8 fb ⁻¹		~50 fb ⁻¹				~300 fb ⁻¹			9							
Pile Up	~1		~1			~5					~42			Å	1					
Trigger input	1 MHz, partial		1 MHz, partial			30 MHz, full detector readout						- /			12	1				
Maximum trigger output rate (1st sto	age)	5 kHZ			12.5 I	kHZ				2	MHz					-			B	· .
Bandwidth to storage		0.3 GB,	's		0.6 G	B/s				10	GB/s					-		4		l
Number of events to simulate		-		~215	× 10	⁹ ev	ents		~35	500 ×	10 ⁹ ev	ents			~800	0 × 10) ⁹ eve	ents		6

の오오 비로 세로 세로 세로 세탁 소리

0	0	000000	00	EC3
Tools & techn	iques on the	LHCb experin	nent	
Dete • St	ctor ate of the art detectors & (Not detailed in this prese	electronics $(\bullet, \bullet, \bullet$	nalysis etector readout & event builder at 30 MF tsed tracking algorithms tracks rejection Il multivariate classifiers for PID separation	-lz
		• C N • E	Offline Analysis Gradient Boosted Reweighting for 4C/data corrections 3DTs/NNs for selections Amplitude models	
	R&D: Using gene R&D: Hadroniza R&D: Hadroniza R&D: ML to spee Simulation	erators on GPUs tion using ML ed up simulations	· > - (원 > - (분 > - 원 = - 4	

Tools & techniques on LHCb

EDSU Tool 2024

June 3, 2024 4 / 1

LHCb software trigger [Parallel architecture, Algorithms]

- Aims to reduce the data volume from 4 TB/s to about 10 GB/s
- Too many *b* and *c* hadrons to select events based on $p_T \rightarrow Real$ time analysis approach

HLT1 @30 MHz [Parallel architecture, Algorithms]

- Copy full event (\sim 100 kB) to GPU
- $\bullet\,$ Run HLT1 @30 MHz on \sim 500 GPUs:
 - Decode RAW data in tracking sub-detectors
 - Clustering and track reconstruction in tracking sub-detectors
 - Track matching & primary vertices reconstruction
 - 2-track secondary vertices reconstruction
 - Apply selections
- Selections copied back to CPU

PV Reconstruction efficiency VELO-UT tracking efficiency

Sci-Fi tracking efficiency

(Ultra) Fast simulation in LHCb [ML, AI]

• Fast simulation is crucial to be able to analyze the larger datasets to be collected in Run 3 (and later) with the available computing resources

- Several R&D projects to address the question:
 - LAMARR, *ultra-fast* simulation using ML-based parametrizations
 - Propagating optical photons using NVIDIA OptiX ray tracing [Paper]
 - Fast simulation of the ECAL response using VAEs and GANs
 - ...

VAEs = Variational Auto-Encoders, GANs = Generative Adversial Networks

Tools & techniques 000000

(Ultra) Fast simulation in LHCb: Promising results [ML, AI]

Propagating optical photons using NVIDIA OptiX ray tracing [Paper]

- GPU-accelerated optical photon interface
- Tested using RICH1 geometry
- Factor 5-10 gain in propagation time
- Need for more physics processes
- Challenging integration in LHCb simulation

LAMARR, ultra-fast simulation using ML-based parametrizations

- Uses Deep Generative models to parametrize detector response and reconstruction algorithms
- Experimental errors and uncertainties introduced in the detection and reconstruction phases encoded in NNs
- Factor 1000 w.r.t detailed simulation

Tools & techniques

Conclusions & future challenges

LHCb would be nothing without its people ! [Soft skills]

"The Early Career, Gender and Diversity (ECGD) office oversees the well-being and working environment of all LHCb members."

1716 members, 100 institutes, 22 countries (As of 24th May 2024)

- Plenary meetings at each LHCb week
- LHCb note: Effects of Covid on LHCb scientists
- Conducted a work-stress related survey
- Laura Bassi initiative [Anja Beck, Janina Nicolini]
 - Tackle under-representation of women in HEP
 - Promote discussion and ideas on related issues
 - Provide an informal network to colleagues
- LHC-wide Soft-skills workshops
 - Effective teamwork in large collaborations
 - Networking

Conclusions		

- Use of cutting edge tools & techniques allowed LHCb to achieve great performances and publish important results over the years
- Upgrade of the LHCb detector motivated by a rich physics program
- Coping with such increasing luminosity implies unprecedented challenges for particle physics experiment
- LHCb is rising to the occasion:
 - \circ Achieving 30 MHz full event readout \checkmark
 - $\, \circ \,$ Work in progress to speed up simulations $\checkmark \,$
 - Gain up to a factor 1000 in simulation
 - Some limitations inherent to data-driven simulations to tackle
- And it doesn't stop there...

Illustration of the track density inside the VELO generated by 42 collisions spread over a bunch crossing. Left: whole bunch crossing time period (\sim 1 ns). Right: Time window of 20 ps.

Thank you for your attention

Tools & techniques on LHCb

EDSU Tool 2024

June 3. 2024 12 / 11

References

- Links to arXiv papers listed on Slide 3:
 - arXiv:1812.07638
 - arXiv:1808.08865
 - arXiv:2104.04421
 - arXiv:2108.09284
 - arXiv:2109.01113
- Sources for numbers on Slide 3:
 - U2 Workshop May 2021, C. Bozzi
 - Operation and Performance of the LHCb experiment
 - An LHCb Vertex Locator (VELO) for 2030s
 - Looking Forward (Track Following Algorithm)
- Search by triplet: An efficient local track reconstruction algorithm for parallel architectures
- LHCb ECGD Office web page

- Hadronization using ML
- Search by triplet
- Standalone track reconstruction and matching algorithms for GPU-based High level trigger at LHCb
- LHCb Upgrade II FTDR