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Neutrino oscillations : open questions
       direct probe to a new source of 

fundamental Charge-Parity violation and first in 
leptonic sector 
→ connected to matter/antimatter asymmetry 
through leptogenesis scenarios

Many other interesting (a-)symmetries to test: 

nm

nt ne

nm

nt ne

CP
Posc (ν)≠Posc(ν)  

- why mixing so different between 
quarks and neutrinos ?

- is the mass ordering  the same as charged leptons ? 
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Neutrinos as a tool
n as a ‘’clock’’ : 
could be the largest fundamental 
T-reversal asymmetry in particle 
physics

n as a ‘’ruler’’ :
probe for deformed space-time from 
Minkowski metrics

n as an ‘interferometer’ :
decoherence from 
GW or quantum gravity

n as (quantic) ‘messanger’ :

n as ‘spoon’ : 
matter distribution 
in the universe 
depends on mn 

Sci.Rep. 13 (2023) 1, 12651

Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02436-w

Mod. Phys. Lett. A 27 (2012) 1250077

Communication with coherence 
on large distance, single-particle 
entangled state

EPL 85 (2009) 50002
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Gigantic detector : 
tenth of kTons
 (10 ne-100 ne, few 
hundreds of nm, nm)

(→hundreds of kTons 
next generation) 

Highly capable near detectors 
(few tons, >10000 nm, before 
oscillations)

And this change 
everything !



  

Tools for neutrino analysis
● Reconstruction of tracks, events selection : 

extract n information from reconstructed final state 
particles of neutrino interactions

●  Data-MC fit to extract oscillation measurements : 
→ statistical methods (combination of datasets : 
near+far detectors, different experiments)

See next talks in this section !
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NOVA

Far detector: 
14 kT on surface

– Placed 14mrad off-axis to produce a
narrow-band spectrum

Near Detector: 
300T underground

NUMI beam 
at FNAL

Baseline: 810km

– Functionally identical near and far 
detectors : liquid scintillator
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T2K

ND280 

m

clear ring fuzzy ring

- Huge water 
cherenkov detector 
(50 kTon) 

- Multipurpose 
magnetized 
near detector :
full tracking and 
particle 
reconstruction 
(few tons)

- Placed 2.5deg off-axis to produce narrow-band flux

- JPARC beam
(Japan Proton 
Accelerator 
Research Center)
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Evidence of oscillation

nm spectrum at the far detector
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amplitude
frequency

nm disappearance

nm spectrum at the far detector

~3.5% precision : 
octant unkown, 
maximal oscillation 
possible

~1.5% precision 
(systematics starts to 
limit the measurement)
No sensitivity to sign !

Global fit from all experiments

~

Precision era
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Precision era
nm disappearance

nm spectrum at the far detector

nt mostly not 
accessible 
(En<mt)

ne appearance

<3% precision from 
reactor experiments

Global fit from all experiments
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Charge-Parity violation : 
the strenght of accelerator n experiments

nm ne nenm

Switching magnets polarity :
→   ↔  -→- 

CP
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Charge-Parity violation 
& matter effects → mass ordering (MO)

CPnm ne nenm

- ne makes charged current interactions with electrons 
in matter : additional potential in matter of opposite sign 
for ne/ne

- larger neutrino energy and longer baseline →  
larger the matter effect Sensitivity to Dm2 sign : MO !

Switching magnets polarity :
→   ↔  -→- 
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CPV & MO : data



28

CPV results : T2K - NOVA
Comparison T2K and 
NOVA → joint fit
(see Clarence talk for details)
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Mass ordering results : T2K - SK

- JUNO reactor experiment: from oscillation in vacuum
- MO from combination reactor+accelerator of different precision measurements of Dm²

Joint fit T2K+SK

SuperKamiokande leading MO results with atmospheric neutrinos : Dc2(IO-NO) = 5.69

(see Clarence talk for details)

+ mild dCP sensitivity in agreement with T2K 

CPV MO

Next future :
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Prospects
New generation of experiments with thousands of events in ne and ne 

HyperKamiokande : T2K x8 mass x2.5beam power

T2K data HK projections

CPV discovery at 5s for >60% of possible dCP values

Sub-percent precision on |Dm23²| and sin2q23

nm

ne ne

nm
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Prospects
New : large energy coverage and different baselines to measure the oscillation pattern in a 
more agnostic/open-mind way (beyond PMNS paradigm)

DUNE : 1300 km baseline, 
energy up to few GeV, 
Liquid Argon TPCs 
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Entering in the precision era

Crucial importance of a new generation of highly capable near detectors

→ Main challenge : precise energy reconstruction 
 From final state particles to neutrino : complex nuclear effects 
to correct for
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BSM ‘surprises’ ?
Sterile ‘conventional’ searches as modifications of active neutrinos oscillations 
→ sterile mass scales accessible driven by oscillation frequency 

Near detectors (short baseline L) 
→ test for >1eV Dm²

Δm2 L
E

Phys.Rev.Lett. 130 (2023) 1, 011801 Phys. Rev. D 99, 071103 (2019) Phys.Rev.Lett. 122 (2019) 9, 091803

Far detectors (long baseline L) 
→ test for lower Dm²
Use ne appearance, nm 
disappearance but also Neutral 
Current
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BSM ‘surprises’ ?

- ND280: decay of sterile 
neutrinos in TPC gas volume 

Phys. Rev. D 100, 052006 (2019)

Sterile searches at ‘unconventional’ mass scales (hundreds of MeV): well motivated in 
models of bariogenesis through leptogenesis, and in nMSM 

- Challenge : creative strategies to suppress the 
background from interactions of active neutrinos

T2K

- ‘’Heavy neutral lepton’’ from decays of Kaons in the 
beamline → HNL into the near detector volume
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BSM ‘surprises’ ?

- Challenge : creative strategies to suppress the 
background from interactions of active neutrinos

- heavy sterile delayed (larger 
ToF) with respect to interactions 
of standard neutrino

MicroBooNE: 

Phys. Rev. D 101, 052001 (2020)

- heavy sterile from a 
nearby beam not pointing 
directly to MicroBoone 

Phys.Rev.Lett. 132 (2024) 4, 041801

Sterile searches at ‘unconventional’ mass scales (hundreds of MeV): well motivated in 
models of bariogenesis through leptogenesis, and in nMSM 

- ‘’Heavy neutral lepton’’ from decays of Kaons in the 
beamline → HNL into the near detector volume
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BSM ‘surprises’ ?

Eg : NSI constraints from T2K-NOVA joint fit

 Peculiar nature of n and being in direct contact 
with LUV: natural to expect new type of 
interactions for neutrinos: Non Standard 
Interactions 

GFϵNSI ( ν̄ ν)( f̄ f )

P
hy

s .
 R

ev
. L

e t
t. 

12
6 

(2
0 2

1)
 0

51
8 0

2

This is a quite open paradigm (difficult to falsify) but one clear signature would be 
modified oscillation results depending on L (while standard oscillations go as L/E)
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Conclusions → Prospects
Neutrinos could be a wonderful tool to probe fundamental physics
Many neutrinos characteristics are still only partially known : we are bulding a much better 
knowledge of neutrino oscillation thanks to accelerator long-baseline experiments 

First hints of CP-violation in leptonic sector but still degeneracies with MO
→ the combination of different experiments (including atmospheric and reactor 
experiments) will solve the issue

Next generation of experiments (HyperKamiokande and DUNE)  
→ ultimate precision physics on PMNS + opening new ways to look at oscillation with 
more model-independent / open-mind approaches

Era of precision physics on disappearance parameters (mixing angles and mass 
differences) → need precise controls of neutrino flux and cross-section :
Crucial role of highly performing near detectors !
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Neutrinos as door to New Physics (HEP)

 → ‘fishing’ expedition to the next energy scale of the necessary New Physics
 The SM cannot answer to many fundamental questions in cosmology and HEP

 Expansion of Lagrangian in terms of NP energy scale (LUV):

The only 5th order operator possible according 
to fundamental symmetries: neutrino 
(Majorana!) mass is the first order effect of NP

Neutrinos directly 
connected to the most 
economical expansion 
of SM physics
→ neutrinos are a 
natural and very 
powerful door to New 
Physics

Adam Falkowski
P2IO BSMNu workshop
(https://indico.in2p3.fr/event/29937/overview)
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Charge-Parity violation  

CPnm ne nenm

Aside note :
Tnm ne nmne

CPT

nm nm

nm nm

3 flavors necessary to allow CP violation !

T

nm nm

nm nm No CPV !
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Beyond PMNS
- The ‘standard’ oscillation paradigm (PMNS-based) is very strict and not motivated by 
fundamental symmetries (mixing angles and neutrino masses are ‘accidental’ numbers).

In particular it assumes - minimal 3-flavour scenario
- standard neutrino interactions for production and detection
- standard matter effects along propagation

Example of general beyond-PMNS ‘effective’ 
approach: can we search for fundamental CP 
violation in a more model-independent way?

- allow for arbitrary (non-standard) matter effect                 
- allow for arbitrary (non-unitary) mixing between flavour 
and energy eigenstates 

arXiv:2106.16099 [hep-ph]

→ search for T-violation → look for L 
dependency of oscillations at fixed energy 

No good fit with 
L-even terms 
only → 
T-Violation !

- Combination of experiments will be crucial for a comprehensive, 
precise and open-minded characterization of n oscillations 

https://arxiv.org/abs/2106.16099
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Neutrinos with beams around the world
Neutrino oscillation physics with accelerators entered the precision era with NOVA and 
T2K → next generation experiments will be worldwide efforts comparable to collider 
experiments

FNAL beams
- NOVA
- DUNE

KEK (JPARC) beam
- T2K
- T2HK

CERN 
Neutrino 
Platform

… and many other experiments and new 
facilities 

Nuclear theory 
community

- R&D
(SBND, MicroBoone, MINOS, 
Minerva, ...)

(NINJA, ...)
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