Challenges in multi-experiment neutrino oscillation analyses

Introduction

- Joint neutrino oscillation analyses can potentially involve many neutrino sources
 - Accelerators, atmospheric, reactor, solar, galactic? geological? SN?

 Each constrain neutrino oscillation parameters, dependent on baseline and neutrino energy (L/E ratio)

Natural neutrino fluxes

• Atmospheric neutrinos significantly overlap with accelerators

Accelerator neutrinos

- Accelerator neutrino oscillation experiments generally in the 0.5-5 GeV region
 - Some with wide, some with narrow band beam
- Studying (anti-) v_{μ} \rightarrow (anti-) v_{μ} and (anti-) v_{μ} \rightarrow (anti-) v_{e}
- Complex scenario of which systematics matter
 - What matters for T2K, may matter less for NOvA, may matter less for DUNE, and vice versa
 - Measurements in one region might be difficult to reconcile with other regions
 - How correlated are the systematics between experiments?

Introduction

Beam + reactor

- Little to no overlap in neutrino flux, interaction, or detector uncertainties: barely any systematics correlations
- Potentially overlapping oscillation measurements
 - $sin^2\theta_{13}$, Δm^2_{32}

- Same **detector**: shared uncertainties
- Potentially similar neutrino interactions: constrained by beam near detector?
- Correlations in neutrino flux? Same process, different methods? Different energies?
- Overlaps in oscillation measurements; complimentary features
 - δ_{CP} , mass ordering, $\sin^2\theta_{23}$, Δm^2_{32} , ...

- Potentially similar neutrino interactions: constrained by both experiment's near detectors?
- Same process gives rise to neutrinos: potentially large correlations in neutrino flux
- Overlapping oscillation measurements; complimentary features
 - δ_{CP} , mass ordering, $\sin^2\theta_{23}$, Δm^2_{32} , ...

Global fits

- Joint fits are regularly pursued by global fitting groups
 - e.g. NuFit (JHEP 09 (2020) 178), de Salas et al (JHEP 02 (2021) 071), ...
- Use fast (approximate) simulations of experiments, with less sophisticated systematics and selections
 - Compare $\Delta\chi^2$ for oscillation parameters, number of events at the far detector, etc to official publications to validate simulation

Difficult to explore if possible tensions come from systematics

Why a joint SK+T2K analysis

- Beam+atmospheric analyses significantly improve Hyper-K's δ_{CP} constraint if the mass ordering is not known
 - Competitive with DUNE

Why a joint SK+T2K analysis

- Beam+atmospheric analyses significantly improve Hyper-K's δ_{CP} constraint if the mass ordering is not known
 - Competitive with DUNE

 Atmospheric neutrinos sensitive to CP consérvation hypothesis, where T2K has degeneracy (δ_{CP}~0, ±π)

Why a joint T2K+NOvA analysis

- Interesting developments in δ_{CP} and mass ordering preference
 - MO and δ_{CP} somewhat degenerate, but to different extent
 - δ_{CP}: 30% vs 25% effect
 - MO: 9% vs 19% effect
- T2K and NOvA individually prefer normal ordering (NO)
- In NO, T2K prefers $\delta_{CP} \sim \pi/2$, NOvA prefers $\delta_{CP} \sim \pi$
 - Alleged "tension" at 90% CL
- In IO, both experiments prefer δ_{CP}~-π/2
- Impact of syst. correlations studied in the joint analysis

Frequentist Fits

Challenges in joint analyses

- The main challenge is correlating the systematic uncertainties
 - Neutrino interactions and neutrino flux are obvious candidates

Challenges in joint analyses

- The main challenge is correlating the systematic uncertainties
 - Neutrino interactions and neutrino flux are obvious candidates

- Choices made by each experiment complicates this
 - T2K and NOvA use different interaction generators, event formats, etc: too complicated to unify for first iteration. Studied worst case scenario
 - Formation of unified event format: NuHepMC (inspired by LHC community), important in future ^{2310.13211 [hep-ph]}
 - T2K+SK had better starting point: studied phase space, use T2K ND to constrain sub-GeV atmospheric interactions, correlate interactions

Challenges in joint analyses

- The main challenge is correlating the systematic uncertainties
 - Neutrino interactions and neutrino flux are obvious candidates

- Choices made by each experiment complicates this
 - T2K and NOvA use different interaction generators, event formats, etc: too complicated to unify for first iteration. Studied worst case scenario
 - Formation of unified event format: NuHepMC (inspired by LHC community), important in future ^{2310.13211 [hep-ph]}
 - T2K+SK had better starting point: studied phase space, use T2K ND to constrain sub-GeV atmospheric interactions, correlate interactions
- Flux simulations tuned to **different hadron-scattering data**: interesting to study correlation, but not done for first analyses
 - Impact of flux uncertainties relatively **small** when ND is present

• Compared details of interaction generators, and experiment-specific tuning, using NUISANCE JINST 12 (2017) 01, P01016

See Kamil's talk for more!

• Compared details of interaction generators, and experiment-specific tuning, using NUISANCE JINST 12 (2017) 01, P01016

See Kamil's talk for more!

 Compared details of interaction generators, and experiment-specific tuning, using NUISANCE JINST 12 (2017) 01, P01016

• Compared details of interaction generators, and experiment-specific tuning, using NUISANCE JINST 12 (2017) 01, P01016

SK+T2K statistical developments

- Two MCMC analyses for Bayesian inference, one GPU accelerated and simultaneous ND analysis
- Two frequentist analyses, one from SK and one from T2K (GPU accelerated)
- Ann. Statist. 22(3): 1142-1160, 1994
 Goodness of fit assessed by posterior predictive p-values, and parameter goodness of fit

T2K+NOvA tool developments

• Developed obfuscation of other experiment's code: propose MCMC step \rightarrow get likelihood via black box

- Investigation of worst-case-scenario missing correlations and impact on joint analysis
- Both settling for MCMC, practical for high dimensionality
 - Similar method and tools to SK+T2K

Results, SK+T2K

• Compatible Bayesian and frequentist results

- 90% of posterior probability in normal ordering
- 61% of posterior probability in **upper octant**

Results, NOvA+T2K

Summary

- Joint oscillation analyses can **lift multiple degeneracies** in individual oscillation experiments
 - Degeneracies both through **oscillation** and **nuisance** parameters
 - e.g. mass ordering and CP violating phase in Hyper-K
- Large joint oscillation analyses have begun, using official analysis tools by the experiments
 - Main challenge is evaluating the **cross-correlations**
- Tools developed for interaction model investigations and statistical techniques; flux correlations not included
 - Interest in studying flux further!
- Weak preference for normal ordering, upper octant, and CP violation; NOvA no preference for ordering
 - If inverted ordering, 3σ exclusion of CP conservation
- Joint analyses increasingly important as statistical uncertainties drastically decrease, e.g. HK and DUNE
 - Work needs to start **now to unify treatment**

Backups

Event counts at the FDs

Sample	T2K		Hyper-Kamiokande	DUNE
N_{μ}^{rec} FHC	318	211	10000	7000
$N_{\mu}^{\text{rec}} \text{ RHC}$	137	105	14000	3500
$N_e^{\rm rec}$ FHC	108	82	3000	1500
N _e ^{rec} RHC	16	33	3000	500

- HK and DUNE will have enough events to be limited by the ~3% (anti-)v_e uncertainty
- Current experiments at the 3-5% level uncertainties*

Neutrino fluxes

Neutrino fluxes

Neutrino fluxes

- The beam is characterised by high-statistics samples at the near detector(s) before long baseline oscillations
- Events observed at the far detector have many shared uncertainties with the near detector
 - Constrain flux and interaction model using near detector data

$$N_{\rm ND}^{\alpha}(\vec{x}) = \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm ND}^{\alpha}(\vec{x})$$
$$N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$$

• Mitigates many of the systematics, e.g. size of cross sections

- For atmospheric neutrinos, there is no near detector, systematics instead addressed by down-going neutrinos
 - Very small oscillation probability in region
 - Effectively acting as a near-detector constraint throughout a large neutrino energy range
- Nowhere near the same constraining power as T2K near detector
 - Appropriately correlate detector and interaction systematics
 - Improve atmospheric constraints via oscillation and interaction parameters; improve beam constraint via detector parameters

• T2K has degeneracies with δ_{CP} and mass ordering

• T2K has degeneracies with δ_{CP} and mass ordering

Why a joint atmospheric analysis But, T2K has good sensitivity to mixing angle sin²θ₂₃

Why a joint atmospheric analysis

- Both experiments are sensitive to δ_{CP} from v_{e} appearance
- T2K is not sensitive to mass ordering, but good constraint on δ_{CP}
- SK has good constraint on mass ordering, but barely on δ_{CP} : sees an average effect, due to energy resolution
 - T2K's sin² θ_{23} constraint helps reducing degeneracies in SK

Why a joint atmospheric analysis

- Both experiments are sensitive to δ_{CP} from $v_{\rm e}$ appearance
- T2K is not sensitive to mass ordering, but good constraint on δ_{CP}
- SK has good constraint on mass ordering, but barely on δ_{CP} : sees an average effect, due to energy resolution
 - T2K's sin² θ_{23} constraint helps reducing degeneracies in SK

Why a joint atmospheric analysis

 SK sees multiple neutrino sources: here we use atmospheric neutrinos, and beam neutrinos from T2K

- Same detector, sometimes similar selections and fluxes
 - Unify systematics and selections where possible
 - Improved oscillation constraints through sharing systematics, and using high-statistics SK samples to inform T2K samples
 - Utilise high-statistics near-detector samples from T2K to constrain aspects of atmospheric selections: expose tensions
- Beam+atmospheric analysis may be required for Hyper-Kamiokande competitiveness with DUNE (depending on mass ordering and δ_{CP})

Why a joint beam analysis NOvA experiment higher neutrino energy, longer baseline compared to T2K

– Stronger mass ordering sensitvity, weaker δ_{CP} sensitivity

• Should be some correlation in neutrino interactions?

Results, SK+T2K

• Compatible Bayesian and frequentist results

• Weak preference for normal mass ordering

	SK only	T2K only	SK+T2K
Upper octant	0.318(0.337)	0.785(0.761)	$0.611 \ (0.639)$
Normal ordering	0.654(0.633)	0.832(0.822)	0.900(0.887)
		F	Posterior probabilities

Importance of systematics

 Details of systematic uncertainties are becoming important for highstatistics long-baseline experiments

- v_{μ} selections seeing impact of systematics: $sin^2\theta_{23}$ and Δm^2_{32}
- v_e selections still statistics limited: δ_{CP}, mass ordering, and sin²θ₂₃>0.5
- Assessing cross-experiment correlations becoming increasingly important, especially as tensions arise
 - Not possible via global fits outside experiments
- Next-generation experiments (HK, DUNE) will have order of magnitude more data: systematic uncertainties critical

Fake-data studies

- Realistically, won't have a perfect interaction model for a *timely* oscillation analysis
- Reasonable best case scenario: a model that fits the experimental data, but is not applicable to other experiments
 - The model is *effective*, but **not complete**
 - The physics is not modelled exactly, but approximately, with effects soaked up in the wrong part of the model
- What if nature is described by a different model; what bias is incurred on oscillation parameters?
- The bias this may cause is generally mitigated by "fake-data studies"
- Can change exclusion statements and model choices

Fake-data studies

- Use an alternative model to make a prediction for near and far detectors
- Fit to the alternative model at the near detector
 - Set of parameters that best describe the alternative model

Frequentist p-values for SK+T2K

MINOS

- First ever beam+atmospheric, and neutrinos/antineutrios, MINOS, numu only: Phys.Rev.Lett. 110 (2013) 25, 251801
- Follow up, including nue: Phys.Rev.Lett. 112 (2014) 191801
- 10.71E20 POT numu, 3.36E20 POT numubar, 37.88 kton years
- Bartol flux, NEUGEN3 interaction beam, NUANCE interaction atmospheric
- Final analysis Phys.Rev.Lett. 125 (2020) 13, 131802
- 10.56E20 POT numu, MINOS, 3.36E20 POT numubar, MINOS,
 0.15E20 POT numu, MINOS 9 GeV, 37.88 kton years, MINOS
- 22.87 kton years extra atmospheric, 9.69E20 POT numu MINOS+
- Bartol flux, NEUGEN3 interaction beam atmospheric, Surrounding rock NUANCE
- Difficulty in measuring nue/anti-nue, no nue samples in MINOS+ analysis due to NC backgrounds
- Fully correlated energy scale parameter
- Other correlations ignored due to statistics

