

LISA Mission, status and science

Antoine Petiteau (CEA/IRFU/DPhP & APC) for the LISA mission and LISA Consortium

EDSU-Tools

Noirmoutier - 6th June 2024

Sensitivity to GWs

<u>cea</u>

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

2

Sensitivity to GWs

irfu

<u>cea</u>

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

2

- Laser Interferometer Space Antenna
- ► 3 spacecrafts on heliocentric orbits separated by 2.5 millions km
- Goal: detect strains of 10⁻²¹ by monitoring arm length changes at the few picometre level

- Measurement points must be shielded from fluctuating nongravitational influences:
 - the spacecraft protects test-masses (TMs) from external forces and always adjusts itself on it using micro-thrusters
 - Readout:
 - interferometric (sensitive axis)
 - capacitive sensing

ESA Redbook - OHB Italia

LISAPathfinder final main results

 Successful demonstration of the ability to shield from fluctuating non-gravitational influences

M. Armano et al. PRL 120, 061101 (2018)

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

Several steps towards the required precision of measurement

Several steps towards the required precision of measurement

Several steps towards the required precision of measurement

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

Several steps towards the required precision of measurement

esa

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

Several steps towards the required precision of measurement

irfu

Several steps towards the required precision of measurement

$(TM2 \rightarrow SC2) + (SC2 \rightarrow SC3) + (SC3 \rightarrow TM3)$

Gravitational wave sources emitting between 0.02mHz and 1 Hz

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

3 TDI channels with 2 "~independents"

* Drag-Free Attitude Control System ** Charge Management Device

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

3 TDI channels with 2 "~independents"

Data Analysis of GWs

Catalogs of GWs sources with their waveform

irfu

Cea

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

* Drag-Free Attitude Control System ** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

L1 3 TDI channels with 2 "~independents"

L0

Data Analysis of GWs

Catalogs of GWs sources with their waveform

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

LISA sensitivity

Response of the detector to GWs Noises 10-35 Simulation (LISACode) 10^{1} Simulation (LISANode) Semi-analytic Analytic (Technical Note) Reference points (analytic) --- LDC 10^{-1} Reference points (analytic) 10⁻³⁷ 10-3 Response to GW $X_{2.0}$ PSD noise $X_{2.0}$ (1/Hz) 10-39 10-5 10^{-7} 10^{-41} 10^{-9} 10^{-11} 10-43 10-13 10- 10^{-15} 10⁻³ 10^{-1} 10^{-4} 10^{-2} 10° 10^{-4} 10^{-3} 10^{-2} 10^{-1} Frequency (Hz) Frequency (Hz)

 10°

Cea

Timeline and status

- ► 1993: first proposal ESA/NASA
- 20/06/2017: LISA mission approved by ESA Science Program Committee (SPC) after the success of LISAPathfinder and GW detection by LIGO-Virgo.
- End 2021: success of the ESA Mission Formulation Review
- 25/01/2024: success of the Mission Adoption Review and adoption by the SPC: design is fully validated and we have the ressource to build the instrument
- Long building phase of multiple MOSAs: 6 flight models + test models
- ► Launch 2035
- ► 1.5 years of transfer, 4.5 years nominal mission, 6.5 years extension

Timeline and status Building already started ...

ZIFO (demonstration bench for high stability interferometry)

Telescope

LISA collaboration

· e e sa

irfu

Cea

LISA - An international mission led by ESA

LISA RedBook

LISA Definition Study Report (Redbook):

- written by the LISA Science Study Team with the support of the LISA Consortium
- submitted and validated at adoption
- Content:
 - Science of LISA
 - Instrument
 - Data processing
 - Organisation
- Available at :
 - <u>arXiv:2402.07571</u>
 - www.cosmos.esa.int/web/lisa/lisa-redbook

ESA UNCLASSIFIED - Releasable to the Public

September 2023

LISA Laser Interferometer Space Antenna

Definition Study Report

→ THE EUROPEAN SPACE AGENCY

Cea

irfu

Cea

GW sources in the mHz band

- Binaries: large range of masses and mass ratios:
 - SuperMassive BH Binaries
 - Extreme Mass Ratio Inspiral
 - Stellar mass BH Binaries
 - Double White Dwarfs
 - Double Neutron Stars
 - Intermediate Mass Ratio Inspiral
 - Intermediate Mass BH Binaries
- Stochastic backgrounds:
 - First order phase transitions, cosmic string networks, ...
- ► Bursts: cosmic strings, ...
- Unknown?

22

GW sources in the mHz band

- Binaries: large range of masses and mass ratios:
 - SuperMassive BH Binaries
 - Extreme Mass Ratio Inspiral
 - Stellar mass BH Binaries
 - Double White Dwarfs
 - Double Neutron Stars

13

Stellar-mass Black Holes

s Intermediate-mass Black Holes

Massive Black Holes

Cea

GW sources in the mHz band

- Binaries: large range of masses and mass ratios:
 - SuperMassive BH Binaries
 - Extreme Mass Ratio Inspiral
 - Stellar mass BH Binaries
 - Double White Dwarfs
 - Double Neutron Stars
 - Intermediate Mass Ratio Inspiral
 - Intermediate Mass BH Binaries
- Stochastic backgrounds:
 - First order phase transitions, cosmic string networks, ...
- ► Bursts: cosmic strings, ...
- Unknown?

Binaries observed by LISA

irfu

cea

Sources	SNR	Duration	Event rate
Galactic binaries	10 – 500	permane nt	10000 – 30000 detectables + background
Verification binaries	7 - 100	permane nt	20 (today)
Stellar mass black hole binaries	7 - 30	1 à 10 years	1 to 20
Extreme Mass Ratio Inspirals	7 - 60	1 year	1 to 2000 / year
Massive Black Hole binaries	10 - 3000	Hours - months	10 to 100 / year

LISA - A. Petiteau - EDSU-Tools - Noirmoutier - 6th June 2024

- Formation and evolution pathways of dark compact binary stars in the Milky Way and in neighbouring galaxies;
- The Milky Way mass distribution;
- The interplay between gravitational waves and tidal dissipation.

Precision:

- Distance: \sim 30% 1%
- Chirp mass: \sim 10% 0.0001%
- Sky position: $\sim {\rm few} \ {\rm deg}^2$

Galactic Binary

- SO2: Trace the origin, growth and merger history of massive black holes across cosmic ages:
 - Discover seed black holes at cosmic dawn;
 - Study the growth mechanism and merger history of massive black holes from the epoch of the earliest quasars;

irfu

Cea

Massive BH Binary Merger

SO2: Trace the origin, growth and merger history of massive black holes across cosmic ages:

• Identify the electromagnetic counterparts of massive black hole binary coalescences.

. . .

. . .

Massive BH Binary Merger

 SO2: Trace the origin, growth and merger history of massive black holes across cosmic ages:

• Identify the electromagnetic counterparts of massive black hole binary coalescences.

Massive BH Binary Merger

SO2: Trace the origin, growth and merger history of massive black holes

• Identify the electromagnetic counterparts of massive black hole binary coalescences.

 <u>SO3:</u> Probe the properties and immediate environments of black holes in the local Universe using EMRIs and IMRIs:

- <u>SO3:</u> Probe the properties and immediate environments of black holes in the local Universe using EMRIs and IMRIs:
 - Study the properties and immediate environment of Milky Way-like MBHs using EMRIs;

- SO3: Probe the properties and immediate environments of black holes in the local Universe using EMRIs and IMRIs:
 - Study the properties and immediate environment of Milky Way-like MBHs using EMRIs;
 - Study the IMBH population using IMRI.

Cea

LISA Science

SO4: Understand the astrophysics of stellar origin black holes :

- Study the statistical properties of sBHs far from merger;
- Detecting high mass sBHBs and probing their environment;
- Enabling multiband and multimessenger observations at the time of coalescence.

SO5: Explore the fundamental nature of gravity and black holes :

► <u>SO5</u>: Explore the fundamental nature of gravity and black holes :

• Use ringdown characteristics observed in MBHB coalescences to test whether the post-merger objects are the MBHs predicted by GR;

Precision for the "golden" EMRI :

• Mass of the big black hole at

• Spin of the big black hole 10-5

• Quadrupolar moment 10-3 %

irfu

Cea

 $\sim 0.001\%$

(absolute)

SO5: Explore the fundamental nature of gravity and black holes :

- Use ringdown characteristics observed in MBHB coalescences to test whether the post-merger objects are the MBHs predicted by GR;
- Use EMRIs to explore the multipolar structure of MBHs and search for the presence of new light fields;

Precision for the "golden" EMRI :

• Mass of the big black hole at

• Spin of the big black hole 10-5

• Quadrupolar moment 10-3 %

irfu

Cea

 $\sim 0.001\%$

(absolute)

SO5: Explore the fundamental nature of gravity and black holes :

- Use ringdown characteristics observed in MBHB coalescences to test whether the post-merger objects are the MBHs predicted by GR;
- Use EMRIs to explore the multipolar structure of MBHs and search for the presence of new light fields;
- Test the presence of beyond-GR emission channels;
- Test the propagation properties of GW.

► <u>SO6</u>: Probe the rate of expansion of the Universe :

- Cosmology from bright sirens: massive black hole binaries;
- Cosmology from dark sirens: extreme mass ratio inspirals and stellar-origin black hole binaries;
- Cosmology at all redshift: combining local and high-redshift LISA standard sirens measurements.

21

Constraint on the geometry of the Universe:No calibration needed

LISA - $\,$ \bullet H_{0} to a few % with observations up to z ~ 3

Stochastic GW Background

- <u>SO7</u>: Understand stochastic GW
 <u>backgrounds</u> and their implications for the early Universe and TeV-scale particle physics:
 - Characterise the astrophysical SGWB;
 - Measure, or set upper limits on, the spectral shape of the cosmological SGWB;
 - Characterise the large-scale anisotropy of the SGWB.
- SO8: Search for GW bursts and unforeseen sources :
 - Search for cusps and kinks of cosmic strings;
 - Search for unmodelled sources.

irfu

Cea

Science Objectives

- SO1: Study the formation and evolution of compact binary stars in the Milky Way Galaxy. Astroph
- **SO2:** Trace the origin, growth and merger history of massive black holes across cosmic ages.
- **SO3:** Probe the properties and immediate environments of black holes in the local Universe using EMRIs and IMRIs. Fundamental
- **SO4:** Understand the astrophysics of stellar origin black holes.
- SO5: Explore the fundamental nature of gravity and black holes.
- **SO6:** Probe the rate of expansion of the Universe.
- Understand stochastic GW backgrounds and their implications for the early Universe and TeV-scale particle physics.
- Search for GW bursts and unforeseen sources.

Losmo

physics

irfu

Conclusion

- LISA is a large mission led by ESA to explore the Universe with gravitational wave in the mHz band.
- LISA has been adopted in January by ESA, i.e. it is fully supported by ESA, its member states and NASA.
- It is now starting its development and building phase for a launch in 2035 for 4.5 to 10 years of operations.
- LISA in a large range of domains with a huge science case for astrophysics, cosmology and fundamental physics.
- LISA is a tool to explore the Dark Universe !

irfu

Cea

Thank you !----

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

Measurements via exchange of beams:

- Heterodyne interferometry with carrier for interspacecraft measurement => GWs
- Sideband for transferring amplified clock jitter => correction of additional clock jitter
- Pseudo-Random Noise => ranging (measure arm length)
- Laser locking

