Searching for the Stochastic Gravitational-Wave Background With Ground-Based Detectors

Jishnu Suresh Université catholique de Louvain

One of the primary targets of the upcoming runs of GW detectors/future detectors will be the detection of **Stochastic Gravitational Wave Background**

Burst

Persistent

Stochastic Background

Unmodelled

OPERATIONAL DEFINITION

Superposition of signals too weak or too numerous to individually detect

Looks like noise in a single detector

Characterized statistically in terms of ensemble averages of the metric perturbations

WHY SHOULD WE CARE ABOUT SGWB ?

Weakness of gravity relative to other forces \Rightarrow provides an unprecedented tool to explore the physics of the early universe.

Lack of SGWB detection ———

Current Observational Horizon

Bounds on the high-redshift Universe

WHAT DETECTION METHODS CAN WE USE?

What can be done:

- Identify features that distinguish between the expected signal and noise.

The stochastic signal looks more like noise in a single detector.

-Measure our detector's noise sources well enough in amplitude and spectral shape. - Detectors with uncorrelated noise: cross-correlation separates the signal from the noise.

WHAT DETECTION METHODS CAN WE USE?

The stochastic signal looks more like noise in a single detector.

What can be done:

- Identify features that distinguish between the expected signal and noise.

Data from two detectors:

Expected value of cross-correlation:

Assuming detector noise is uncorrelated*:

Cross-correlation separates the signal from the noise

-Measure our detector's noise sources well enough in amplitude and spectral shape. - Detectors with uncorrelated noise: cross-correlation separates the signal from the noise.

$$d_1 = h + n_1$$
 $d_2 = h + n_2$ $h - >$ common GW signal component

Intensity of the background

OVERLAP REDUCTION FUNCTION

Detectors in different locations and with different orientations respond differently to a passing GW.

Overlap function encodes reduction in sensitivity of a cross-correlation analysis due to separation and misalignment of the detectors.

 $\gamma_{ft,p}^{IJ} = \sum F_I^A(\hat{\Omega}, t) F_J^A(\hat{\Omega}, t) e^{2\pi i f \hat{\Omega} \cdot \Delta \mathbf{x}_{\mathcal{I}}(t)/c}$

WHAT DETECTION METHODS CAN WE USE?

What is the optimal way to correlate data from two physically separated and misaligned detectors to search for a SGWB

Cross-correlation estimator

What we meant by optimal: Choose Q to maximize SNR for fixed spectral shape

 \hat{S}_h :

Overlap reduction function

$$\simeq \int_{-\infty}^{\infty} \mathrm{d}f \int_{-\infty}^{\infty} \mathrm{d}f' \,\delta_T(f-f') \,\tilde{d}_1(f) \,\tilde{d}_2^*(f') \,\tilde{Q}^*(f')$$

We often choose a power-law functional form for the SGWB template spectrum

WHICH SGWBs WE ARE SENSITIVE TO?

Astrophysical Origin

PLANCK IR MAP

ASTROPHYSICAL SGWB

WHICH SGWBs WE ARE SENSITIVE TO?

Astrophysical Origin

PLANCK IR MAP

For a collection of sources:

 $\Omega_{g_W}(f) \propto \langle GW energy per source \times \langle source rate \rangle dt$

(redshifted) energy radiated per event per source-frame frequency

$$\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_c} \frac{\mathrm{d}\rho_{\rm gw}}{\mathrm{d}\ln f} = \frac{f}{\rho_c} \frac{\mathrm{d}\rho_{\rm gw}}{\mathrm{d}f} \qquad \rho_{gw} = \frac{c^2}{32\pi G} \langle \dot{h}_{ab}(t,\vec{x})\dot{h}^{ab}(t,\vec{x}) \rangle$$

Non Overlapping

Overlapping

Non Overlapping

Overlapping

Non Overlapping

Overlapping

LIGO-Virgo-KAGRA Astrophysical background

BNS

Loud

SENSITIVITY PROJECTION

LVK PRX:13, 011048 (2023)

 $\Omega_{\rm CBC}(f) \propto \int_0^\infty dz \, R(z) \, \frac{1}{(1+z)E(z)} f_s \left(\frac{dE_{\rm gw}}{df_{\rm s}} \right)$

WE ARE NOW AT:

We are reaching there...

Thank you!

O1+O2+O3 RESULTS

The observed cross-correlation spectra combining data from all three baselines in O3, as well as the HL baseline in O1 and O2. The spectrum is consistent with expectations from uncorrelated, Gaussian noise.

O3 RESULTS

Since there was no evidence of an isotropic signal, we placed upper limits on Ω_{lpha} for different power-law indices lpha.

	Uniform prior			Log-uniform prior		
α	О3	02	Improv.	О3	02	In
0	1.7x10 ⁻⁸	6.0x10 ⁻⁸	3.6	5.8x10 ⁻⁹	3.5x10 ⁻⁸	
2/3	1.7x10 ⁻⁸	4.8x10 ⁻⁸	4.0	3.4x10 ⁻⁹	3.0x10 ⁻⁸	
3	1.3x10 ⁻⁹	7.9x10 ⁻⁹	5.9	3.9x10 ⁻¹⁰	5.1x10-9	

PRD104, 022004 (2021)

