Jishnu Suresh Université catholique de Louvain

Searching for the Stochastic Gravitational-Wave Background With Ground-Based Detectors

Unmodelled

Persistent

Burst

Binary Merger (Continuous) **One of the primary targets of the upcoming runs of GW detectors/future detectors will be the detection of Stochastic Gravitational Wave Background**

Stochastic Background

• Looks like noise in a single detector

• Characterized statistically in terms of ensemble averages of the metric perturbations

OPERATIONAL DEFINITION

Superposition of signals too weak or too numerous to individually detect

WHY SHOULD WE CARE ABOUT SGWB?

Weakness of gravity relative to other forces \Rightarrow provides an unprecedented tool to explore the physics of the early universe.

Current Observational Horizon

Lack of SGWB detection \longrightarrow Bounds on the high-redshift Universe

WHAT DETECTION METHODS CAN WE USE?

What can be done:

- Indentify features that distinguish between the expected signal and noise.
	-
-

Measure our detector's noise sources well enough in amplitude and spectral shape. - Detectors with uncorrelated noise: cross-correlation separates the signal from the noise.

The stochastic signal looks more like noise in a single detector.

Data from two detectors:
$$
d_1 = h + n_1
$$
 $d_2 = h + n_2$ $h \rightarrow$ common GW signal component

Assuming detector noise is uncorrelated*:

Cross-correlation separates the signal from the noise Intensity of the background

$$
d_1 d_2 = \langle h^2 \rangle + \langle n_1 n_2 \rangle + \langle n_1 n_2 \rangle + \langle n_1 n_2 \rangle = \langle h^2 \rangle + \langle n_1 n_2 \rangle
$$

$$
\langle d_1 d_2 \rangle = \langle h^2 \rangle + \langle n_1 n_2 \rangle
$$

$$
\langle d_1 d_2 \rangle = \langle h^2 \rangle \equiv \mathcal{S}_h
$$

WHAT DETECTION METHODS CAN WE USE?

The stochastic signal looks more like noise in a single detector.

What can be done:

- Identify features that distinguish between the expected signal and noise.
-

Expected value of cross-correlation:

Measure our detector's noise sources well enough in amplitude and spectral shape. Detectors with uncorrelated noise: cross-correlation separates the signal from the noise.

OVERLAP REDUCTION FUNCTION

Detectors in different locations and with different orientations respond differently to a passing GW.

Overlap function encodes reduction in sensitivity of a cross-correlation analysis due to separation and misalignment of the detectors.

γIJ ft,*p* = ∑ *A* F_I^A *^I* (Ω ̂ , *t*) F_J^A *^J* (Ω ̂ f) $e^{2\pi i f \Omega \cdot \Delta x}$ $\mathcal{I}(t)/c$ ̂

̂

$$
\hat{S}_h \simeq \int_{-\infty}^{\infty} df \int_{-\infty}^{\infty} df' \, \delta_T(f - f') \, \tilde{d}_1(f) \, \tilde{d}_2^*(f') \, \tilde{Q}^*(f')
$$

What is the optimal way to correlate data from two physically separated and misaligned detectors to search for a SGWB

Cross-correlation estimator

What we meant by optimal: $\,$ Choose Q to maximize SNR for fixed spectral shape

We often choose a power-law functional form for the SGWB template spectrum

WHAT DETECTION METHODS CAN WE USE?

WHICH SGWBs WE ARE SENSITIVE TO?

PLANCK IR MAP

COSMOLOGICAL SGWB ASTROPHYSICAL SGWB

WHICH SGWBs WE ARE SENSITIVE TO?

PLANCK IR MAP

ASTROPHYSICAL STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

$$
\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_c} \frac{\mathrm{d} \rho_{\rm gw}}{\mathrm{d} \ln f} = \frac{f}{\rho_c} \frac{\mathrm{d} \rho_{\rm gw}}{\mathrm{d} f} \qquad \qquad \rho_{\rm gw} = \frac{c^2}{32\pi G} \langle \dot{h}_{ab}(t, \vec{x}) \dot{h}^{ab}(t, \vec{x}) \rangle
$$

For a collection of sources:

 $\Omega_{\text{gw}}(f)$ α <GW energy per source> x < source rate> dt

(redshifted) energy radiated per event per source-frame frequency

ASTROPHYSICAL STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Non **Overlapping**

Overlapping

Non

Overlapping

ASTROPHYSICAL STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Overlapping

Non

BNS

LIGO-Virgo-KAGRA Astrophysical background

ASTROPHYSICAL STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

SENSITIVITY PROJECTION **LVK PRX:13, 011048 (2023)**

 $\Omega_{\mathrm{CBC}}(f) \propto$ ∞ 0

d*z R*(*z*) 1 $(1 + z)E(z)$ *f s* ($\mathrm{d}E_\mathrm{gw}$ df_s

WE ARE NOW AT:

We are reaching there…

Thank you!

The observed cross-correlation spectra combining data from all three baselines in O3, as well as the HL baseline in O1 and O2. The spectrum is consistent with expectations from uncorrelated, Gaussian noise.

O1+O2+O3 RESULTS

O3 RESULTS **PRD104, 022004 (2021)**

Since there was no evidence of an isotropic signal, we placed upper limits on Ω_a for different power-law indices α .

