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• Redshift 𝑧: binaries with electromagnetic 

counterpart 

• Luminosity distance 𝐷𝐿 from compact 

binaries gravitational wave signal
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Both inclination angle and distance 

affect the signal’s amplitude
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Inclination angle – distance dependence

Alberto Salvarese, UT Austin 4 (H.Y. Chen, et al., 2018)

https://www.nature.com/articles/s41586-018-0606-0


Constraints from: GRB detection (H.Y. Chen, et al., 2019 ), Kilonova light-curves (Y. Peng, et al., 2024)

Electromagnetic constraints
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(P. A. Evans, et al., 2017)

(K. P. Mooley, et al., 2018) (Y. Peng, et al., 2024)
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What if electromagnetic 

constraints are biased? 
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Strategy: consider a joint posterior for ℎ0 and the systematics, and marginalize over the latter 
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Proposed method

Alberto Salvarese, UT Austin

Goal: to develope a Bayesian pipeline that mitigates incliantion angle’s systematics effects

• Consider both gravitational and electromagnetic

signals: systematic is captured

• Use multiple events: same systematic is repeated

Strategy: consider a joint posterior for ℎ0 and the systematics, and marginalize over the latter 
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More complex model for the systematic:
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Changing bias distribution

A Normal distribution was used for both the bias recovery model and the bias injection 

• Uniform distribution

• Exponential distribution

• Poisson distribution
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Three other distribution were explored for injection:



Changing injection bias distribution
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Uniform distribution
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Changing injection bias distribution
Exponential distribution
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Changing injection bias distribution
Poisson distribution
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Conclusions
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• We developed a method that mitigates this systematic bias, allowing us to 

safely consider electromagnetic observations

• Electromagnetic information must be used very carefully due to their

possible systematics

• Estimates of a bright sirens inclination angle are crucial to strongly

constrain the Hubble constant
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• The method remains accurate even if the distributions for the injection and 

recovery bias models differ
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Thank you
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Precision ratios
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No kwnowledge on the bias

has been assumed
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• Detections of short GRB: constraints on the binary viewing angle (H.Y. Chen, et al., 2019 )

Electromagnetic constraints
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• GRB EM components (P. A. Evans, et al., 2017)
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• Detections of short GRB: constraints on the binary viewing angle (H.Y. Chen, et al., 2019 )

• Possibly: Kilonova light-curves (Y. Peng, et al., 2024)

Electromagnetic constraints

Alberto Salvarese, UT Austin

• GRB EM components (P. A. Evans, et al., 2017)

• Afterglow superluminal components (K. P. Mooley, et al., 

2018)

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031028
https://arxiv.org/abs/2402.05871
https://www.science.org/doi/10.1126/science.aap9580
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EM likelihood

EM likelihood: double-Normal distribution to 

account for > 90∘ angles 
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• GW detections care about orbital motion orientation: 

inclination angle 𝜄 ∈ [0∘, 180∘]

H. Y. Chen, et al., 2019

• EM estimates: viewing angle 𝜃 = min{𝜄, 180∘ − 𝜄} 
(H. Y. Chen, et al., 2019)

𝐷𝐸𝑀 ∼ 𝑁( ǁ𝜄, 𝜋 − ǁ𝜄; 𝜎)

https://journals.aps.org/prx/pdf/10.1103/PhysRevX.9.031028


Method: application

• Three posteriors were estimated through MCMC:

• 30 realizations of 20 simulated events: ǁ𝜄 = 𝜄 + 𝑁 0, 𝜎 + 𝑁(𝛽0, 𝛽1)  

H.Y. Chen, et al., 2018

• 𝑝 ℎ0 𝐷𝐺𝑊 : only GW information (H.Y. Chen, et al., 2018)

• 𝑝 ℎ0 𝐷𝐺𝑊 : only GW modified by biased EM information

• 𝑝 ℎ0, 𝛽0, 𝛽1 𝐷𝐺𝑊+𝐸𝑀 : debiased GW + EM information

• Uniform priors: ℎ0 ∈ [0.2, 2], 𝛽0 ∈ [−90∘, 90∘], 𝛽1 ∈ [2∘, 90∘ − 𝛽0] 
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https://www.nature.com/articles/s41586-018-0606-0
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