CMB B-modes observations

Status and perspectives

Benjamin Beringue Postdoc @ APC-CNRS June, 6th 2024

Exploring the Dark Side of the Universe - Tools

Credit : ESA and the Planck Collaboration

Science from the large scale cosmic microwave background polarization structure

Cosmic Evolution

10⁻³² seconds

1 second

100 seconds

380 000 years

Inflation

Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

Dark ages

Atoms start feeling the gravity of the cosmic web of dark matter

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

10⁻³² seconds

1 second

100 seconds

380 000 years

Inflation

Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

3

10⁻³² seconds

1 second

100 seconds

380 000 years

Inflation

Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

10⁻³² seconds

1 second

100 seconds

380 000 years

10⁻³² seconds

1 second

100 seconds

380 000 years

- Preprocessing
 MapMaking

 - Component separation

10⁻³² seconds

1 second

100 seconds

380 000 years

Benjamin Beringue, APC - EDSU tools

The CMB is also polarised !

Benjamin Beringue, APC - EDSU tools

The CMB is also polarised !

Benjamin Beringue, APC - EDSU tools

 $dl^{2} = a^{2}(t) \left[1 + 2\zeta(\mathbf{x}, t) \right] \left| \delta_{ij} + h_{ij}(\mathbf{x}, t) \right| dx^{i} dx^{j}$

Cosmic Microwave Background E-modes | - - | B-modes + $dl^{2} = a^{2}(t) \left[1 + 2\zeta(\mathbf{x}, t)\right] \left[\delta_{ij} + h_{ij}(\mathbf{x}, t)\right] dx^{i} dx^{j}$ Intensity (Temperature)

Maps from ACT DR4 : Naess et al 24

Cosmic Microwave Background E-modes | - - | $B-modes \leftarrow$ $dl^{2} = a^{2}(t) \left[1 + 2\zeta(\mathbf{x}, t) \right] \left[\delta_{ij} + h_{ij}(\mathbf{x}, t) \right] dx^{i} dx^{j}$ Intensity (Temperature) **B-modes** are only sourced tensor perturbations, Maps from ACT DR4 : Naess et al 24 primordial grav. waves

Cosmic Microwave Background Current constraints on r

CMB B-modes observations

CMB B-modes observations

CMB B-modes observations Improving sensitivity of future experiments

Noise per detector $s[\mu K. \operatorname{arcmin}] =$

CMB B-modes observations Improving sensitivity of future experiments

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale polarisation modes

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale polarisation modes

SO Large Aperture Telescope (LAT)

- ► 6m cross-Dragone telescope
- ► 30.000 TES detectors
- ► 6 frequency bands
- Observing small scale anisotropies over a large fraction of the sky

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale
 polarisation modes

SO:UK + SO:JP

- ► 3 additional telescopes
- ► 30.000 TES detectors
- Extended frequency range

SO Large Aperture Telescope (LAT)

- ► 6m cross-Dragone telescope
- ► 30.000 TES detectors
- ► 6 frequency bands
- Observing small scale anisotropies over a large fraction of the sky

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- ► 30.000 TES detectors
- •6 frequency bands
- Focusing on large scale
 polarisation modes

SO:UK + SO:JP + SO:FR ?

- ► 3 additional telescopes
- ► 30.000 TES detectors
- Extended frequency range

SO Large Aperture Telescope (LAT)

<image>

30.000 TES detectors

• 6 frequency bands

 Observing small scale anisotropies over a large fraction of the sky

SO Small Aperture Telescopes (SATs)

- Nominally 3 telescopes
- **30.000** TES detectors
- ► 6 frequency bands
- Focusing on large scale polarisation modes

SO:UK + SO:JP

- ► 3 additional telescopes
- ► **30.000** TES detectors
- Extended frequency range

- -70% diesel consumption
- ► +9% efficiency

SO Large Aperture Telescope (LAT)

- ► 6m cross-Dragone telescope
- ► **30.000** TES detectors
- ► 6 frequency bands
- Observing small scale anisotropies over a large fraction of the sky

CMB B-i Simons Obse

SO Small Ape Telescopes (S

- Nominally 3 telesc
- 30.000 TES detect
- 6 frequency band
- Focusing on large
 polarisation mod

SO:UK + SO

- 3 additional telesc
- 30.000 TES detect
- Extended frequer range

SO PV array diesel consumption efficiency

ge Aperture cope (LAT)

Dragone telescope detectors y bands small scale es over a large he sky

CMB B-modes observations CMB Stage 4

Nominal configuration (until a few weeks ago)

Chilean Observatory

Deep & wide survey Two LATs, ~60% of the sky 240,000 detectors

South Pole Observatory

╋

CMB B-modes observations LiteBIRD

See next talk by Gilles Weymann-Despres !

CMB B-modes observations Future Observatories

CMB B-modes observations Future Observatories

CMB B-modes observations

Multipole₃₂moment

Multipole₃₃moment

Multipole₃₄moment

- Delensing steps
- 1. Need to reconstruct the gravitational potential
- 2. Estimate the lensing Bmodes
- 3. Subtract from the observed B-modes

Delensing steps

- 1. Need to reconstruct the gravitational potential
- 2. Estimate the lensing Bmodes
- 3. Subtract from the observed B-modes

r = 0

r = 0

r = 0

r = 0.01

CMB B-modes observations

CMB B-modes observations The mm/sub-mm sky

CMB B-modes observations The mm/sub-mm sky

$d = A \cdot s + n$

Blind Methods:

- Minimum assumptions
- Example: ILC
 - Assume one column of A is known
 - Compute weights such that $w \cdot a = 1$ and $\hat{s} \equiv w \cdot d$ has minimum variance

$$w = \frac{a^{\mathrm{T}}\hat{R}^{-1}}{a^{\mathrm{T}}\hat{R}^{-1}a}$$

Blind Methods:

- Minimum assumptions
- Example: ILC
 - Assume one column of A is known
 - Compute weights such that $w \cdot a = 1$ and $\hat{s} \equiv w \cdot d$ has minimum variance

$$w = \frac{a^{\mathrm{T}}\hat{R}^{-1}}{a^{\mathrm{T}}\hat{R}^{-1}a}$$

- Example: SMICA [Cardoso et al 2008]
 - Provide structure of A and s
 - Fit model to the data
 - Wiener filtering of the input maps with best-fit model

Blind Methods:

- Minimum assumptions
- Example: ILC
 - Assume one column of A is known
 - Compute weights such that $w \cdot a = 1$ and $\hat{s} \equiv w \cdot d$ has minimum variance

$$w = \frac{a^{\mathrm{T}}\hat{R}^{-1}}{a^{\mathrm{T}}\hat{R}^{-1}a}$$

- Example: SMICA [Cardoso et al 2008]
 - Provide structure of A and s
 - Fit model to the data
 - Wiener filtering of the input maps with best-fit model

Parametric Methods:

- Build a complete model
- Fit it to the data
- Example: fgbuster [Errard and Stompor 2012]
 - Model the mixing matrix
 - Maximise the spectral likelihood
 - Use the best-fit maxing matrix to derive the component maps

Parametric Methods:

- Build a complete model
- Fit it to the data
- Example: fgbuster [Errard and Stompor 2012]
 - Model the mixing matrix
 - Maximise the spectral likelihood
 - Use the best-fit mixing matrix to derive the component maps

Parametric Methods:

- Build a complete model
- Fit it to the data
- Example: fgbuster [Errard and Stompor 2012]
 - Model the mixing matrix
 - Maximise the spectral likelihood
 - Use the best-fit mixing matrix to derive the component maps

• Example: Cosmo analysis

- Construct noiseless power spectra from splits
- Model foreground and systematics at the power spectrum level
- Maximise (gaussian) likelihood

Parametric Methods:

- Build a complete model
- Fit it to the data
- Example: fgbuster [Errard and Stompor 2012]
 - Model the mixing matrix
 - Maximise the spectral likelihood
 - Use the best-fit mixing matrix to derive the component maps

• Example: Cosmo analysis

- Construct noiseless power spectra from splits
- Model foreground and systematics at the power spectrum level
- Maximise (gaussian) likelihood

Component separation

CMB B-modes observations

CMB B-modes observations Mitigation of systematics

Benjamin Beringue, APC - EDSU tools

SciPo May Man Mar Mar

Science from the Large Scale **Cosmic Microwave Background Polarisation Structure**

+ Amalia, Binh, Andrea, Alice, Charles

Thanks a lot !

beringue@apc.in2p3.fr beringueb

Exploring the Dark Side of the Universe - Tools

Credit : ESA and the Planck Collaboration

Science from the large scale cosmic microwave background polarization structure

