

Constraining Cosmological Inflation with LiteBIRD

Gilles Weymann-Despres

on behalf of the LiteBIRD collaboration

06/06/2024

LiteBIRD overview

第2段液体水素タンク Second Stage

ついきは酸素ない

Second Stage

第1段液体酸素タンク

第1段液体水素タンク First Stage LH2 Tan

> Solid Rocket Booster SRB-3

度1段TンジンLE-9

- Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission selected in May 2019 to be launched in ~2032 with JAXA's H3 rocket
- LiteBIRD collaboration: Over 400 researchers from Japan, North America and Europe
- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
- Making a discovery or ruling out well-motivated inflationary models, insight into the quantum nature of gravity, the primordial *B*-mode power is proportional to the **tensor-to-scalar ratio**, *r*.
- LiteBIRD will improve current sensitivity on r by a factor ~50

The challenge of B-modes detection

- The *B*-mode signal is expected to have an amplitude at least 3 orders of magnitude below the CMB temperature anisotropies
- LiteBIRD is targeting a sensitivity level in polarization ~30 times better than Planck
- This extremely good statistical uncertainty must go in parallel with exquisite control of:
 - 1. Instrument systematic uncertainties
 - 2. Galactic foreground contamination

3. "Lensing B-mode signal" induced by gravitational lensing

LiteBIRD scanning strategy

06/06/2024

LiteBIRD spacecraft overview

- 3 telescopes are used to provide the 40-402 GHz frequency coverage
 - **1. LFT** (low frequency telescope)
 - 2. **MFT** (middle frequency telescope)
 - 3. **HFT** (high frequency telescope)
- 4508 multi-chroic transition-edge sensor (TES) on bolometer arrays cooled to 100 mK
- Rotating half-wave plate (HWP), for 1/*f* noise and systematics reduction
- Optics cooled to 5 K

- Mass: 2.6 t
- Power: 3.0 kW
- Data: 17.9 Gb/day

EDSU-Tools 2024 - Gilles Weymann-Despres - LiteBIRD

LFT

Low Frequency Telescope (LFT)

- Polarization Modulation Unit (PMU) as the first sky-side optical element
- Crossed-Dragone design
 - Mirrors and aperture stop at 5 K
 - Made of aluminium
- Field of view: 18° x 9°
- Aperture diameter: 400 mm
- Frequency range: 40-140 GHz
- Angular resolution: 70-24 arcmin
- Cross-polarization < -30 dB
- Rotation of the polarization angle across the FoV $< \pm 1.5^{\circ}$
- Weight < 200 kg

Sekimoto+ SPIE 2020

Middle-High Frequency Telescopes (MFT/HFT)

- Refractive optics
- Each telescope has PMU with a half-wave-plate (HWP)
- Optics at 5 K
- Field of view: 28°
- Simple and high heritage from ground experiments
- Compact (mass & volume)
- Simplified design for filtering scheme
- PP lenses + ARC
- Weight 180 kg

	MFT	HFT
v (GHz)	100-195	195-402
Ap. diameter (mm)	300	200
Ang. res. (arcmin)	38-28	29-18

Sensitivity per frequency & foregrounds

Rule of thumb: 1000 detectors in space = 100 000 detectors on ground

• Combined sensitivity to primordial CMB anisotropies: 2.2 μK·arcmin

Foreground cleaning:

- Take benefit of the **frequency coverage** to fit the frequency-dependent astrophysical components
- **Impact**: Reduction of the foreground signal by several orders of magnitude.
- **Counterpart**: systematic residual and noise degradation

06/06/2024

EDSU-Tools 2024 - Gilles Weymann-Despres - LiteBIRD

LiteBIRD main scientific objectives

- Huge discovery impact: inflation energy scale V (and V', V"), field excursion (r > 0.01 => excursion exceeding the Planck mass)
- An upper limit would disfavour the simplest inflationary scenarios (large-field ones, with $\mathbf{M} > M_{p}$)

A cosmology-particle-physics interface

FreBIR9

Weymann-Despres+2023

Study-case: Inflation, dark matter and reheating within the MSSM

Inflaton = scalar field, evolves with the Klein-Gordon equation in the **MSSM scalar potential** along its **valleys**.

NEW Inclusion of **RGE radiative corrections**: we have shown that this is key for a robust inflationnary inference of the MSSM spectrum.

06/06/2024

A cosmology-particle-physics interface

LiteBIRD other science outcomes

- The mission specifications are driven by the required sensitivity on *r* that will update our understanding of the very-early universe, as well as fundamental and particle physics.
- Meeting those sensitivity requirements will allow us to address other important scientific topics:
 - 1. Characterize the *B*-mode power spectrum and search for source fields ⁶ (e.g. scale-invariance, non-Gaussianity, parity violation, ...)
 - 2. Cosmic-variance-limited detection of large-scale *E*-modes
 - **Reionization** (improve $\sigma(\tau)$ by a factor of 3)
 - Neutrino mass ($\sigma(\sum m_{\nu}) = 12 \text{ meV}$)
 - 3. Constraints on cosmic birefringence
 - 4. Investigating the SZ effect
 - 5. Constraints on primordial magnetic fields
 - 6. Elucidating anomalies
 - 7. Tackling Galactic science

• LFT PMU BBM at Kavli IPMU:

- Rotation test of superconducting magnetic bearing system in the 4K cryostat
- Stable rotation at cryogenic temperature (< 10 K)

06/06/2024

EDSU-Tools 2024 - Gilles Weymann-Despres - LiteBIRD

Focal plane configuration

Sensitivity per frequency & foregrounds

- Projected polarization sensitivities for a 3-year full-sky survey
- Best of 4.6 $\mu K \cdot arcmin$ @ 119 GHz
- Combined sensitivity to primordial CMB anisotropies: 2.2 $\mu K \cdot arcmin$

Foreground cleaning:

- Take benefit of the **frequency coverage** to fit the frequency-dependent astrophysical components
- *eg.* parametrize the foreground frequency dependency.
 Synchrotron: power law with spatially-varying index
 Dust: modified blackbody
- **Impact**: Reduction of the foreground signal by several orders of magnitude.
- **Counterpart**: systematic residual and noise degradation

06/06/2024

- For r = 0, total uncertainty of $\delta r < 0.001$
- For r = 0.01, 5- σ independent detection of the reionization (2 < ℓ < 10) and recombination (11 < ℓ < 200) peaks
- $\sigma_{stat} < 6 \times 10^{-4}$ and $\sigma_{sys} < 6 \times 10^{-4}$ + additional security margin of $\sigma_{margin} < 6 \times 10^{-4}$

Constraints on **inflation models.** *eg.* single-field slow-roll: A scalar field dominates the Universe energy budget and slowly rolls on its potential *V* around an energy scale "*".

- Huge discovery impact: inflation energy scale V (and V', V"), field excursion (r > 0.01 => excursion exceeding the Planck mass)
- An **upper limit** would disfavour the simplest inflationary scenarios (large-field ones, with $\mathbf{M} > M_{p}$)

06/06/2024

06/06/2024

Requirements on the B modes and r measurements

• For r = 0, total uncertainty of $\delta r < 0.001$

• For r = 0.01, 5- σ independent detection of the reionization $(2 < \ell < 10)$ and recombination $(11 < \ell < 200)$ peaks

• $\sigma_{stat} < 6 \times 10^{-4}$ and $\sigma_{sys} < 6 \times 10^{-4}$ + additional security margin of $\sigma_{margin} < 6 \times 10^{-4}$

Constraints on inflation models.

eg. single-field slow-roll:

$$\dot{\phi}^2 \ll V \qquad \qquad \begin{pmatrix} A_{\rm S} \\ n_{\rm S} \\ r \end{pmatrix} \underset{\text{slow-roll}}{\overline{k} \simeq k_*} f \begin{pmatrix} V_*, V_*' \\ V_*, V_*', V_*' \\ V_*' \end{pmatrix}$$

- Huge discovery impact: inflation energy scale V (and V', V"), field excursion (r > 0.01 => excursion exceeding the Planck mass)
- An upper limit would disfavour the simplest inflationary scenarios (large-field ones, with $\mathbf{M} > M_{p}$)

ns

06/06/2024

- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
 - Making a discovery or ruling out well-motivated inflationary models
 - Insight into the quantum nature of gravity
- The inflationary (*i.e.* primordial) *B*-mode power is proportional to the **tensor-to-scalar ratio**, *r*
- Current best constraint: r < 0.032 (95% C.L.) (IIII) Tristram et al. 2022, combining BK18 and Planck PR4)
- LiteBIRD will improve current sensitivity on r by a factor ~ 50
- L1-requirements (no external data):
 - For r = 0, total uncertainty of $\delta r < 0.001$
 - For r = 0.01, 5- σ independent detection of the reionization $(2 < \ell < 10)$ and recombination $(11 < \ell < 200)$ peaks
- L2-requirements:

• $\sigma_{stat} < 6 \times 10^{-4}$ and $\sigma_{sys} < 6 \times 10^{-4}$ + additional security margin of $\sigma_{margin} < 6 \times 10^{-4}$

LiteBIRD constraints on inflation

an *r* measurement with LiteBIRD => constraints on V, V' and V'' in single-field slow-roll scenario

06/06/2024

EDSU-Tools 2024 - Gilles Weymann-Despres - LiteBIRD

1

LiteBIRD overview

06/06/2024

Optical depth, reionization and neutrino masses

- LiteBIRD will provide a cosmic-variance limited measurement of the *E*-mode power spectrum at large scales $(2 \le l \le 200)$
- This will lead to improved constraints on:
 - <u>Reionization</u>
 - Cosmic-variance measurement of the optical depth to reionization
 ⇒ σ(τ) ≈ 0.002 ⇒ ×2 improvement with respect to Planck
 (I Planck Int.Res. LVII, 2020)
 - Improved constraints on reionization history models: 35% improvement on the uncertainty of $\Delta(z_{reion})$
 - •<u>Neutrino masses</u>
 - ×2 improvement on $\sigma(\sum m_v)$
 - $\sigma(\sum m_v) = 12 \text{ eV} \Rightarrow 5\sigma$ detection for a minimum value of $\sum m_v = 60$ meV (allowed by flavour-oscillation experiments) or larger
 - Potentially allow to distinguish between the inverted neutrino mass ordering and the normal ordering

Constraints on cosmic

hirofringanga

- Cosmic birefringence could be seeded by parity-violating processes in Universe
- Could occur if dark matter or dark energy are a pseudo-scalar field coupled to electromagnetism that changes sign under inversion of spatial coordinates
- Induces non-zero *TB* and *EB* and also a *B*-mode signal
- Constraints from the CMB must account jointly for i) a possible detector angle miscalibration (Minami et al., 2019) and ii) a positive EB signal from Galactic foregrounds (Diego-Palazuelos et al., 2022)
- Recent measurements show a tentative detection of a birefringence angle of $\beta = (0.34 \pm 0.09)^{\circ}$ (Ease Eskilt & Komatsu 2022, from a combination of WMAP and Planck PR4)
- LiteBIRD has the potential to:
 - Reduce the error bar on a global β leading to a ~10-sigma detection
 - Produce a map of β to test for **cosmic-birefringence anisotropy**

LiteBIRD collaboration PTEP 2023

LiteBIRD other science outcomes

- The mission specifications are driven by the required sensitivity on r
- Meeting those sensitivity requirements would allow to address other important scientific topics, such as:
 - 1. SZ effect (thermal, diffuse, relativistic corrections)
 - 2. Constraints on primordial magnetic fields
 - 3. Elucidating anomalies
 - 4. Galactic science
 - Characterizing the foreground SED
 - Large-scale Galactic magnetic field
 - Models of dust polarization

Error budget after foreground cleaning

Statistical uncertainties

Systematic uncertainties

Fudamental noise $NEP_{ph}^2 + NEP_{th}^2$ 62.5% NEP_{EMI}^2 NEP_{mag}^2 13.1% NEP_{CR}^2 $\overset{\rm NEP^2_{TF}}{\operatorname{NEP}^2_{vib}}$ NEP_{read}^2 + Readout noise + External noise

Instrumental systematics:

(increased by foreground cleaning)

+ Astrophysical systematics

|--|

- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
 - Making a discovery or ruling out well-motivated inflationary models
 - Insight into the quantum nature of gravity
- The inflationary (*i.e.* primordial) *B*-mode power is proportional to the **tensor-to-scalar ratio**, *r*
- Current best constraint: r < 0.032 (95% C.L.) (IIII) Tristram et al. 2022, combining BK18 and Planck PR4)
- LiteBIRD will improve current sensitivity on r by a factor ~ 50
- L1-requirements (no external data):
 - For r = 0, total uncertainty of $\delta r < 0.001$
 - For r = 0.01, 5- σ detection of the reionization
- $(2 < \ell < 10)$ and recombination (11 $< \ell < 200)$ peaks independently
- L2-requirements:
 - $\sigma_{stat} < 6 \times 10^{-4}$ and $\sigma_{sys} < 6 \times 10^{-4}$
 - Additional security margin of $\sigma_{margin} < 6 \times 10^{-4}$

LiteBIRD sensitivities

EDSU-Tools 2024

19

LiteBIRD collaboration PTEP 2023

Foreground cleaning

- Take benefit of the **frequency coverage** to fit the frequency-dependent astrophysical components
- **Parametrize** the foreground frequency dependency.
- Synchrotron: power law with spatially-varying index
- **Dust**: modified blackbody
- Multi-Clustering interface with foregrounds data to account for spatial variability
 (III) Puglisi et al. 2022, Carones et al. 2023)
- **Impact**: Reduction of the foreground signal by several orders of magnitude.
- · But: systematic residual and noise degradation

Impact on the recovered spectra:

LiteBIRD cryogenic system

- Optimized to ensure **maximum stability** of the focal planes and of the optical elements of the telescopes
 - Radiative cooling to 30 K with V-grooves
 - Two 2ST are used for cooling V-grooves 2 and 3
 - \bullet A 4K-JT and two 2ST are used to cool the LFT and the MHFT
 - A 2K-JT, two 2ST, and a sub-K ADR are used for cooling the focal plane down to 100 mK

Mapping the hot gas in the Universe

- The **Sunyaev-Zel'dovich** effect provides a mean to map the distribution of hot electrons in the Universe
- Improved sensitivity and frequency coverage of LiteBIRD crucially contributes to improve these studies
- Combination with Planck adds the benefit of angular resolution
- LiteBIRD will **improve** ×10 the noise in the SZ map wrt Planck
- This will allow to:
 - Produce a high-fidelity SZ map over the full-sky essentially free of contamination at l < 200
 - Test theories of structure formation via hot-gas tomography from SZ × galaxy surveys correlations
 - Search form **WHIM** in filaments connecting clusters
 - Study an **inhomogeneous reionization** process via cross-correlations of SZ × CMB optical depth
 - Measure the mean gas T_{e} via the relativistic SZ

EDSU-Tools 2024

9

•

during inflation

Axion decay. LiteBIRD can look for polarized spectral distortions produced by resonant conversion of axions into

photons by the Galactic magnetic field

→ This would offer a power test of inflation at its onset

- constraints on N_{eff} and $\sum m_{v}$
- <u>**µ** distortion</u>. LiteBIRD can detect an anisotropic **µ** distortion induced by non-Gaussian fluctuations induced
- → Such a detection would allow to derive improved
- **<u>Rayleigh scattering</u>**. LiteBIRD will have sensitivity to measure at 25-sigma (Beringue et al. 2021) the frequency-dependent CMB anisotropies due to Rayleigh scattering by HI at the LSS
- LiteBIRD will be sensitive to any spatially-varying CMB spectral distortion, beyond the SZ effect

06/06/2024

Elucidating spatial anomalies with polarization

- Various so-called anomalies have been found in WMAP and Planck temperature data that exert a mild tension against the ΛCDM cosmological model:
 - a lack of power on large angular scales
 - the alignment of the quadrupole and octopole moments
- · Given the is photical antimetaly is provence, the second simply be statistical lukes
- · However, the softed at a solution of the standard model
 - parity asymmetry in the power associated with even/odd mode
- Polanized GMABuan'isotropper'provideaindependent information on the fluctuations that source the temperature on the fluctuations that source the Credit ESA/Planck
- LiteBIRD E-mode polarisation sky maps will allow further tests on the nature of these spatia^{Collaboration} anomalies at close to the cosmic-variance level of sensitivity

Constraints on primordial magnetic fields

- Primordial magnetic fields (PMFs) affect the CMB via different effects:
 - **Gravitational effects** with magnetically-induced perturbations
 - Impact on the **ionization history** of the Universe due to their post-recombination dissipation
 - Induce a Faraday rotation of the CMB polarization
 - **Non-Gaussinity** induced in the CMB polarization anisotropies
- LiteBIRD:
 - Is a **sensitive probe** to PMFs through all these effects, thanks mainly to its remarkable sensitivity in polarization
 - Will break the nG threshold improving current upper limits by a factor of ~ 3
 - Will be able to **univocally identify the PFMs contribution to CMB** by joining all these effects together
 - Will allow a detection of **nG fields** with high significance

Upper limits on PMF amplitude for $n_{\rm B} = -2.9$		
Gravitational effect	$B_{1Mpc} < 0.8 \text{ nG}$	
Ionization history	$\sqrt{\langle B^2 \rangle} < 0.7 \text{ nG}$	
Faraday rotation	$B_{1Mpc} < 3.2 \text{ nG}$	
Non-Gaussianities	$B_{1Mpc} \lesssim 1 \text{ nG}$	

EDSU-Tools 2024

- Sensitivity improved by a factor of 5 at 40 GHz and 10 at 402, with respect to Planck
- Gain in spectral resolution

octronhyging

- Wealth of Galactic science possible:
 - Geometry of the Galactic magnetic field
 - Interstellar turbulence
 - Dust composition
 - Grain alignment
 - Cold clumps

Galactic

- Geometry of synchrotron-bright loops
- SED of the synchrotron emission
- Nature of AME and spectral variations...
- and many others! 06/06/2024

40°

32°

06/06/2024

Foreground cleaning

- "Multi-Clustering technique" (extension of xForecast)
- Distribution of the recovered *r* in 1000 simulations with input *r* = 0, with and without foreground residuals
- Bias from foreground (PySM dls1) residuals is found to be small
- Final value: $r = (3.3 \pm 6.2) \times 10^{-4}$

LiteBIRD readout system

- Digital frequency multiplexing (DfMux) readout technology enables the readout of many Transition Edge Sensors (TES) with fewer components and a low wire count, with no increase of system noise (⇒ photon noise limited detector performance)
- Superconducting resonators are used to assign unique frequency channels to the TES sensors.
- The signal is read out using a low-noise **SQUID amplifier** and an **FPGA controller**.
- This approach saves on mass, volume, power consumption, and cost.
- The technique draws its heritage from ground-based CMB experiments.

I- Cosmology with the CMB

C) **ACDM** conceptual problems

A ($\ddot{a} < 0$: decelerated) radiation-era universe all the way to Big-Bang raises conceptual issues:

Horizon problem:

Flatness problem:

Monopole problem:

I- Cosmology with the CMB

C) Current constraints on inflation

[1807.06211] Planck 2018 results. X. Constraints on inflation

...

$$P_h(k) = r A_S igg(rac{k}{k_\star} igg)^{n_t+ \cdot}$$

detected

Actually expected for simplestconsistent with 0inflation realisations. More generally:

Prediction	Measurement
A spatially flat universe	$\Omega_K = 0.0007 \pm 0.0019$
with a <i>nearly</i> scale-invariant (red)	
spectrum of density perturbations,	$n_{\rm s} = 0.967 \pm 0.004$
which is almost a power law,	$dn/d\ln k = -0.0042 \pm 0.0067$
dominated by scalar perturbations,	$r_{0.002} < 0.065$
which are Gaussian	$f_{\rm NL} = -0.9 \pm 5.1$
and adiabatic,	$\alpha_{-1} = 0.00013 \pm 0.00037$
with negligible topological defects	f < 0.01

13

Single field slow-roll inflation

A) Scalar field slow-rolling on its potential

Λ: example of realisation of a
 (quasi)-de-Sitter universe (*ä* > 0)

Galaxies diluted exponentially

- Ω_{Λ} remains **constant** with the expansion
- Friedmann equations \Rightarrow behaves like a **fluid** with p=ho

Action of a single scalar field minimally coupled to gravity:

$$S_{\phi} = -\int d^{4}x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + V(\phi) \right]$$
Energy-momentum tensor:

$$T_{\mu\nu}^{(\phi)} = \partial_{\mu} \phi \partial_{\nu} \phi + g_{\mu\nu} \left[-\frac{1}{2} g^{\rho\sigma} \partial_{\rho} \phi \partial_{\sigma} \phi + V(\phi) \right]$$

$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\partial S_{\text{matter}}}{\partial g_{\mu\nu}}$$

$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\partial S_{\text{matter}}}{\partial g_{\mu\nu}}$$
In the Friedmann equations:
Density and pressure:

$$\rho = \frac{\dot{\phi}^{2}}{2} + V$$

$$F_{\mu\nu} = 0$$

$$F_{\mu\nu} = \frac{\dot{\phi}^{2}}{2} - V$$
Same equation: ball rolling down a slope!

 $=rac{\mathrm{d}\phi}{\mathrm{d}t}$

A) Scalar field slow-rolling on its potential

If the potential has a **flat region**, the scalar field **velocity** will become small and its kinetic energy **negligible** with respect to its **potential energy**.

$$\rho = \frac{\dot{\phi}^2}{2} + V, \qquad \implies p = -\rho$$

$$p = \frac{\dot{\phi}^2}{2} - V.$$
The **slow-roll approximation** consists of that alongside with $\ddot{\phi} + 3H\dot{\phi} + V' = 0$

Equivalent to conditions on the **Hubble SR parameters**, that quantify

- the deviation from de-Sitter
- the flatness of the potential

in terms of V (SRLO):

$$\varepsilon_{0} = \frac{H_{\rm in}}{H} \qquad \qquad \varepsilon_{1} \simeq \frac{M_{\rm Pl}^{2}}{2} \left(\frac{V'}{V}\right)^{2} \ll 1$$

$$\varepsilon_{n+1} = \frac{\mathrm{d} \ln|\varepsilon_{n}|}{\mathrm{d}N} \ll 1 \qquad \qquad \varepsilon_{2} \simeq 2M_{\rm Pl}^{2} \left[\left(\frac{V'}{V}\right)^{2} - \frac{V''}{V}\right] \ll 1_{15}$$

A) Link to CMB

Now we have a **quasi de-Sitter** universe that can **solve** the **\Lambda**CDM **opened questions**, and in particular which **predicts** the origin of the **perturbations**, and their primordial power spectra, **scalar** \mathscr{P}_{ζ} and **tensor** \mathscr{P}_h .

<u>How</u>? Add a perturbation to the scalar action, derive the new equations of motion for the perturbation, quantize them ...

<u>Result</u>:

B) Recipe: constraining its phenomenology

First thing we can do is to derive **constraints** on this **slow-roll** parameterisation:

Planck data

B) Recipe: constraining its phenomenology

B) Recipe: constraining its phenomenology

$$\begin{split} \hline \phi \to V(\phi, p), \ln R_{\rm rad} & \Longrightarrow \phi_* \\ \hline & & \Rightarrow \{\varepsilon_i *\} \implies \{A_{\rm S}, n_{\rm S}, n_{\rm S,run}, r, n_{\rm T}, n_{\rm T,run}, N_{\rm e-folds} \dots\} \\ \hline & & & & \\ \hline & & & \\ \hline & & & \\ \Delta N_* \stackrel{\rm SRLO}{\simeq} \ln R_{\rm rad} - \ln \left(\frac{k_*}{a_0 \tilde{\rho}_{\gamma}^{1/4}}\right) - \frac{1}{4} \ln \left[\frac{9V_{\rm end}}{\varepsilon_{1*}(3 - \varepsilon_{1\rm end})V_*}\right] + \frac{1}{4} \ln(8\pi^2 A_{\rm S}) \\ & & & \Delta N_* \stackrel{\rm SRLO}{\simeq} \int_{\phi_{\rm end}}^{\phi_*} \frac{V(\phi)}{V_{\phi}(\phi)} d\phi \end{split}$$

B) Recipe: constraining its phenomenology

$$\phi \to V(\phi, p), \ln R_{\rm rad} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_{\rm S}, n_{\rm S}, n_{\rm S,run}, r, n_{\rm T}, n_{\rm T,run}, N_{\rm e-folds} \dots\}$$

$$\varepsilon_1 \simeq \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1$$

$$\varepsilon_2 \simeq 2M_{\rm Pl}^2 \left[\left(\frac{V'}{V}\right)^2 - \frac{V''}{V} \right] \ll 1$$

$$\dots$$

B) Recipe: constraining its phenomenology

$$\phi \to V(\phi, p), \ln R_{\mathrm{rad}} \Longrightarrow \phi_* \Longrightarrow \left\{ \varepsilon_i * \right\} \Longrightarrow \left\{ A_{\mathrm{S}}, n_{\mathrm{S}}, n_{\mathrm{S,run}}, r, n_{\mathrm{T}}, n_{\mathrm{T,run}}, N_{\mathrm{e-folds}} \dots \right\}$$

$$\underbrace{\{\varepsilon_i *\}}_{h_{\mathrm{S}}} \Longrightarrow \left\{ A_{\mathrm{S}}, n_{\mathrm{S}}, n_{\mathrm{S,run}}, r, n_{\mathrm{T}}, n_{\mathrm{T,run}}, N_{\mathrm{e-folds}} \dots \right\}}_{h_{\mathrm{S}} = 1 + \frac{\mathrm{dln}\mathcal{P}_{\zeta}}{\mathrm{dln}k} \Big|_{k_*} \le 1 - 2\varepsilon_{1*} - \varepsilon_{2*}}_{k_*} \qquad \underbrace{\{\varepsilon_i *\}}_{n_{\mathrm{T}} = \frac{\mathrm{dln}\mathcal{P}_{h}}{\mathrm{dln}k} \Big|_{k_*} \le 2\varepsilon_{1*}}_{\mathbb{Z} - 2\varepsilon_{1*}} = 2\varepsilon_{1*} - \varepsilon_{2*}}_{\mathrm{T,run}} = \frac{\mathrm{d^2 \ln \mathcal{P}_{\zeta}}}{\mathrm{dln}k^2} \Big|_{k_*} = 2\varepsilon_{1*} \varepsilon_{2*}}_{\mathbb{Z} - 2\varepsilon_{1*} \varepsilon_{2*}}$$

B) Recipe: constraining its phenomenology

$$\phi \to V(\phi, p), \ln R_{rad} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_s, n_s, n_{s,run}, r, n_T, n_{T,run}, N_{e-folds} \dots\}$$

B) Recipe: constraining its phenomenology

We want more: derive constraints on the potential parameters

$$\phi \to V(\phi, p), \ln R_{rad} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_s, n_s, n_{s,run}, r, n_T, n_{T,run}, N_{e-folds} \dots\}$$

To gain **intuition**: **grid** on the **potential** parameters for some models and **compare** to **experimental** constraints

Has been done for 100's of potentials in [http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html]

0.98

0 99

0.00

0.95

0 96

0.97

ns

1 00

II- Single-field slow-roll inflation

C) Constraining its phenomenology

 $k_{\star}=0.05~{
m Mpc}^{-1}$

Measurement	Value and error
A_S	3.047 ± 0.014
n_S	0.9665 ± 0.0038

Planck Collaboration VI, Astron. Astrophys. 641, A6 (2020).

- Planck collaboration X, Astron. Astrophys. 641, A10 (2020).
- The shape of these **potentials** are theoretically well-**motivated** but still quite **effective**
- Few of them come with a complete study of their embedding within a model of particle physics
- In the following, a case study: MSSM-inflation [Phys. Rev. D 108, 023511, GWD et al.]

Establishing the link between inflation and particles Study-case: MSSM-inflation

Example of a well-embedded model in particle-physics: MSSM-inflation **A**)

sparticles particles R-parity

- **MSSM** = **SUperSYmmetric** extension of the HEP SM.
 - Naturally provides a **WIMP** that can explain the measured $\Omega_{cdm}h^2$. Ο

250

200

100

50

Only a **small fraction** of its parameter space is **excluded** by LHC data. Ο

21

- **Inflaton** = scalar field, evolves with the Klein-Gordon equation in the **MSSM scalar potential** along its valleys ("flat directions").
- We focus on two of its **flat-directions** combinations of scalar fields:
 - *"LLe"* Ο
 - "udd" Ο

....

Studied previously in (not exhaustive):

K. Enqvist and A. Mazumdar, Physics Reports 380, 99 (2003), ISSN

R. Allahverdi, K. Engvist, J. Garcia-Bellido, and A. Mazumdar, Phys. Rev. Lett. 97, (2006)

C. Boehm, J. Da Silva, A. Mazumdar, and E. Pukartas, Phys. Rev. D 87, 023529 (2013)

A) Example of a well-embedded model in particle-physics: MSSM-inflation

The **potential** for *LLe* and *udd*:
$$V_{\text{tree}}(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 - \sqrt{2}A_6\frac{\lambda_6\phi^6}{6M_{\text{Pl}}^3} + \lambda_6^2\frac{\phi^{10}}{M_{\text{Pl}}^6}$$

where ϕ is the real **field value** associated to the inflaton, m_{ϕ} its **mass**. m_{ϕ} and A_6 are **linked** to the underlying **supersymmetric parameters**:

$$m_{\phi}^2 = \; rac{m_{{ ilde u}_R^i}^2 + m_{{ ilde d}_R^j}^2 + m_{{ ilde d}_R^k}^2}^2}{3}$$

$$A_6(M_{
m SUSY}) = rac{6-\sqrt{3}}{3-\sqrt{3}}A_t(M_{
m SUSY})$$

A) Example of a well-embedded model in particle-physics: MSSM-inflation

The **potential** for *LLe* and *udd*:
$$V_{\text{tree}}(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 - \sqrt{2}A_6\frac{\lambda_6\phi^6}{6M_{\text{Pl}}^3} + \lambda_6^2\frac{\phi^{10}}{M_{\text{Pl}}^6}$$

where ϕ is the real **field value** associated to the inflaton, m_{ϕ} its **mass**. m_{ϕ} and A_6 are **linked** to the underlying **supersymmetric parameters**.

B) MSSM-inflation: Radiative corrections impact on the potential

- $ightarrow V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**
 - functions of the **gaugino masses** and the **gauge couplings** at **GUT scale**.
 - vary whether the inflaton is along *udd* or *LLe*

NEW

$$\begin{aligned} Q \frac{\mathrm{d}m_{\phi}^2}{\mathrm{d}Q} &= -\frac{1}{6\pi^2} \Big(\frac{9}{10} M_1^2 g_1^2 + \frac{3}{2} M_2^2 g_2^2 + Y_{m_{\phi}}^{L^i L^j e^k} \Big), \\ Q \frac{\mathrm{d}\widetilde{A}_6}{\mathrm{d}Q} &= \frac{1}{2\pi^2} \Big(\frac{9}{10} M_1 g_1^2 + \frac{3}{2} M_2 g_2^2 + Y_{A_6}^{L^i L^j e^k} \Big), \\ Q \frac{\mathrm{d}\lambda_6}{\mathrm{d}Q} &= -\frac{\lambda_6}{4\pi^2} \Big(\frac{9}{10} g_1^2 + \frac{3}{2} g_2^2 + Y_{\lambda_6}^{L^i L^j e^k} \Big), \end{aligned}$$

- III- Embedding slow-roll in HEP
 - B) MSSM-inflation: Radiative corrections impact on the potential

- $V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**
 - functions of the **gaugino masses** and the **gauge couplings** at **GUT**.

 $m_{\phi}^2 = m_{\phi}^2(\phi)$ $A_6 = A_6(\phi)$

 $\lambda_6 = \lambda_6(\phi)$

• vary whether the inflaton is along *udd* or *LLe*

- III- Embedding slow-roll in HEP
 - B) MSSM-inflation: Radiative corrections impact on the potential

- $V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**
 - functions of the **gaugino masses** and the **gauge couplings** at **GUT**.

 $m_{\phi}^2 = m_{\phi}^2(\phi)$ $A_6 = A_6(\phi)$

 $\lambda_6 = \lambda_6(\phi)$

• vary whether the inflaton is along *udd* or *LLe*

- III- Embedding slow-roll in HEP
 - B) MSSM-inflation: Radiative corrections impact on the potential
- NEW •
- $V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**
 - functions of the **gaugino masses** and the **gauge couplings** at **GUT**.

 $m_{\phi}^2 = m_{\phi}^2(\phi)$ $A_6 = A_6(\phi)$

 $\lambda_6 = \lambda_6(\phi)$

• vary whether the inflaton is along *udd* or *LLe*

- B) MSSM-inflation: Radiative corrections impact on the potential
- **Regions allowed by cosmology** in (illustrative) plans of the **tree-level** parameter space:

• How do these contours **change** beyond tree-level?

B) MSSM-inflation: Radiative corrections impact on the potential

- Not taking properly into account the RGE corrections induces a systematic bias:
 - of order **100-1000 GeV** depending on the inflation scale!
 - well above the *ns* & *As statistical error*!