

Exploring the Dark Side of the Universe - Tools 2024 - 5th World Summit Jun 2 - 7, 2024 - Île de Noirmoutier, France

Lighting up dark matter in underground liquid argon with DarkSide

Davide Franco - APC

on behalf of the DarkSide-20k Collaboration

Dark Matter Wide range of astronomical evidences of the existence of gravitational effects, not arising from ordinary matter

Davide Franco - APC

Looking for dark matter

The Candidate A massive, neutral, stable, cold, nonbaryonic, weakly-interacting particle

WIMPS: Weakly Interacting Massive Particle?

2

Dual-Phase Noble Liquid TPCs for Dark Matter Search

Davide Franco - APC

Dual-Phase Noble Liquid TPCs for Dark Matter Search

4

Dual-Phase Noble Liquid TPCs for Dark Matter Search

Noble Liquids

- Noble
 => no radiochemical impurities
- Scalable => O(10-100 ton)
- High scintillation yield (x 4 organic scintillator)
 => high resolution
- Excellent particle identification
 => background suppression
- High ionization yield
 > very low energy thresholds
- Low electron diffusion and mobility
 => accurate event topology in a TPC

Potential for a **background-free** multi-ton experiment

Why liquid argon?

The Scintillation Pulse Shape Discrimination

³⁹Ar reduction factor in UAr: ~1400

Why not liquid argon?

Underground Argon

Cosmogenic ³⁹Ar in **atmospheric argon** is the primary background (~1 Bq / kg)

Argon extracted from deep underground is naturally shielded against cosmic rays

Lowering the energy threshold with DarkSide-50

Davide Franco - APC

- - Efficiency to extract 1 e- in the gas pocket ~ 100%

Davide Franco - APC

Sensitivity to light dark matter

The Global Argon Dark Matter Collaboration

DarkSide-20k

Combined expertise from four LAr experiments to explore dark matter to the neutrino floor and beyond

ARGO

Extraction with Urania

Expansion of the industrial scale plant in Cortez, to reach capacity of **250 kg/day** of Underground Argon

Initial purity: 99.99%

Davide Franco - APC

The Underground Argon

11

Purification with **ARIA**

~350 m distillation column in Seruci mine (Sardinia)

Process O (1 tonne / day) with 10³ reduction of all chemical impurities

x10 ³⁹Ar/⁴⁰Ar reduction at the rate of 10 kg/day

The demonstrator column (26 m) successfully tested in 2019 with LN2 and in 2021 with argon

Isotopic separation of Ar-36, Ar-38, and Ar-40 has been demonstrated.

Successful test installation of the first module (of 28 central ones) in the mine shaft

The Underground Argon

Eur. Phys. J. C 83 (2023) 5, 453

Assay with **DArT**

Single phase low-background detector to measure the 39Ar depletion factor of different underground argon batches. To be installed inside the ArDM apparatus (Canfranc Laboratory, Spain) filled with LAr (850 kg AAr) used as active veto. Sensitivity to the depletion factor of 1,000 with 10% precision with 7 days exposure.

Simulation with 1 week exposure

The Underground Argon

ArDM: anti-coincidence looking at Compton scatterings

Davide Franco - APC

The DarkSide-20k Detector

14

Muon Veto

Davide Franco - APC

The Muon and Neutron Vetoes

Neutron Veto

https://doi.org/10.48550/arXiv.2404.18492

TPC

- Two optical planes
- ~21 m² in total
- ~100% coverage of cryogenic SiPMs
- 2112 channels to achieve ~ 1 cm xy resolution
- Transparent anode and cathode
- ESR reflector on lateral walls
- Internal surfaces evaporated with TPB

- Tile: 5x5 cm²
- 24 SiPMs directly mounted on a FEB
- NUV-HD-CRYO developed by FBK and produced by LFoundry
- PDU: 20x20 cm²
- 4 readout Channel

The PhotoDetection

Inner and outer veto

- Same SiPM technology
- 512 (5 m²) +128 (1 m²) channels respectively

• 16 Tiles Assembled on a Motherboard

- Optical planes: ~2x10 m²
- Total PDUs used (TPC): 528
- Readout Channels: 2112

NOA (Nuova Officina Assergi)

- INFN Facility managed by LNGS clean room class ISO 6
- Two main rooms:
 - CR3: 3.0 m x 350 m² -> photodetector production area, equipped with highly sophisticated packaging machines for the assembly of photosensors in a dust-controlled environment
 - CR2: 5.8 m x 68 m² -> large volume detector assembly
- Equipped with dedicated Rn-abatement system (currently, Rn level in CR3: 6-10 Bq/m³)
- Operative since Nov. 2022, completed in 2023
- 2023, so far: start-up of activities, characterization of silicon wafers procured for the in-house production of the PhotoDetector Units (PDU).

Plus several PDU test facilities in Naples, Lancaster, Birmingham, Liverpool, Warsaw

SiPM Packaging, Test, and Integration

Davide Franco - APC

SiPM/PDU Performance

parameter	spec required	spec achieved
PDE @ 420 nm	> 40%	~50%
DCR (87 K)	250 Hz / tile	~20 Hz / tile
correlated noise probabilities (afterpulses, cross talk)	< 50% + 50%	<10% + 35%
SiPM gain	> 1E6	> 1E6
SNR after ARMA filter	> 8	> 8
time resolution	~ 10 ns	~15 ns

Davide Franco - APC

Trigger-less DAQ

Sensitivity to light dark matter to be released soon!

Davide Franco - APC

Sensitivity to "high-mass" WIMPs

CEvNS: Coherent Elastic Neutrino-Nucleus Scattering

measured for the first time with the COHERENT CsI[Na] detector in 2017 (Science 357, 1123, 2017)

$$Q_W^2 = (N - (1 - 4 \sin^2 \theta_W) Z)^2 \approx N^2$$

Davide Franco - APC

Supernova neutrinos via coherent scattering

Advantages

- highest cross section in the SN-v energy range
 - "small" detectors become sensitive to SNs
- Insensitive to neutrino flavours
 - Measurement of the entire SN-v flux
 - Sensitivity to the neutronization burst
 - Complementary to CC and ES from giant detectors

Disadvantages

- **keV / sub-keV** recoils due to:
 - **Kinematics**
 - Nuclear recoil quenching
 - Electric-field induced quenching

detected hits reconstructed pulses true S1 106 Before the SN burst [sn/_105΄ 0 10⁴ 2 10⁴ > [hits 103 10² rate 10¹ **10**⁰ 0.02 0.00 0.04 0.06 hit time [s] detected hits reconstructed pulses true S1 106 105 First 100 ms of the SN burst (27 Ms @ 10 kpc) [sn] 0<u>5</u> 10⁴ > [hits 103 105 10² te נא 10¹¹ **10**⁰ 0.02 0.00 0.04 0.06 hit time [s]

Davide Franco - APC

SN burst in DarkSide-20k

- Full radioactive background simulation from most recent screening material campaign
- Waveform simulation with realistic electronic noise
- Simulation of SiPM dark counts, after-pulses, and cross-talks
- Full DAQ emulation
- S1/S2 pulse finder / reconstruction (98% identification efficiency at 1 ionization electron)

Б

Significance

5

3

1

Davide Franco - APC

- Construction of two-phase argon TPC with 50 t active mass (20 t fiducial mass) on going:
 - The largest dark matter detector ever built
 - Commissioning expected by end 2026
- High **sensitivity** to
 - high-mass WIMPs
 - light dark matter particles
 - core-collapse supernova neutrinos
- Custom forefront technologies, among which:
 - Very large array of cryogenic low-noise SiPMs
 - Underground-extracted argon
 - 350 m distillation column

Conclusions

- Construction of two-phase argon TPC with 50 t active mass (20 t fiducial mass) on going:
 - The largest dark matter detector ever built
 - Commissioning expected by end 2026
- High **sensitivity** to
 - high-mass WIMPs
 - light dark matter particles
 - core-collapse supernova neutrinos
- Custom forefront technologies, among which:
 - Very large array of cryogenic low-noise SiPMs
 - Underground-extracted argon
 - 350 m distillation column

Thank You!

Conclusions

