Paving the way for the ultimate rare-events observatory with a liquid xenon detector

XENON

Elena Aprile COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

EDSU 2024 Noirmoutier, June 6,2024

xenonexperiment.org

The XENON Dark Matter Project

XENON10	XENON100	XENON1T	XENONnT
2005-2007	2008-2016	2012-2019	2020-2026 (taking science data)
15 kg Xe target	62 kg Xe target	2 t Xe target, 3.3t total	~6 t Xe target, 8.6t total
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	4 ×10 ⁻⁴⁷ cm ²	Projection: 1.4×10 ⁻⁴⁸ cm ² for 20 tonne-year
~2000000 background ER events/(keV t y)	1800 background ER events/(keV t y)	82 background ER events/(keV t y)	16.1 background ER events/(keV t y)

XENON limits on WIMPs

Liquid Xenon Detectors: Rapid Progress and Best WIMP Limits $> 10 \text{ GeV/c}^2$

Snowmass 2021 Whitepaper on particle dark matter arXiv:2203.08084

Current LXeTPCs

- LZ at SURF, PandaX-4T at CJPL XENONnT at LNGS
- Detector scale: 10 t (LZ), 6 t (PandaX-4T) and 8.6 t LXe (XENONnT) in total xenon mass
 - TPCs with 2 arrays of 3-inch PMTs
 - Different Kr and Rn removal techniques
 - Ultra-pure water shields, n & µ vetos
 - GXe and LXe Purification
- Status: PandaX-4T first result in 2021 (not blind analysis), LZ first results from 2022 run (not blind analysis), XENONnT first results (blind analysis) in 2021/22. All in data-taking mode.

LUX-ZEPLIN

PandaX-4T

Current LXeTPCs

LUX-ZEPLIN

XENONnT

Enabling Technologies

Pulse Tube refrigerator: designed for stable operation at 170 K

R8520 PMTs: : compact 1" square, metal-channel tubes, with 20% QE and low radioactivity

Excellent signal-background discrimination demonstrated

XENON10

 Reject electronic recoils with S2/S1: 99.5% of gamma events are above the mean nuclear recoil

• Reject outside radioactivity with 3D-spatial reconstruction. 0.6 events/ $(kg \cdot day \cdot keV_{ee})$ in the 5.4 kg fiducial mass

XENON10 WIMP Results

XENON10 WIMP Results

Enabling Technologies

Cooling-at-a-distance: 200W PTR (PC150) mounted meters away from TPC

Low-radioactivity PMTs: $<1\mu Bq$ U/Th and 33% QE

Active LXe Veto: 100 kg of LXe outside TPC 50 kg active target

Kr/Xe reduction: to 50 ppb by cryogenic distillation measured with new diagnostic tools (ATTA and RGMS)

Novel Calibration Sources:^{83m}Kr, 220Rn Improved Analysis Tools: Profile Likelihood

Enabling Technologies

Cooling-at-a-distance: 200W PTR (PC150) mounted meters away from TPC

Low-radioactivity PMTs: $<1\mu Bq$ U/Th and 33% QE

Active LXe Veto: 100 kg of LXe outside TPC 50 kg active target

Kr/Xe reduction: to 50 ppb by cryogenic distillation measured with new diagnostic tools (ATTA and RGMS)

Novel Calibration Sources:^{83m}Kr, 220Rn Improved Analysis Tools: Profile Likelihood

Enabling Technologies

Cooling-at-a-distance: 200W PTR (PC150) mounted meters away from TPC

Low-radioactivity PMTs: $< 1\mu Bq$ U/Th and 33% QE

Active LXe Veto: 100 kg of LXe outside TPC 50 kg active target

Kr/Xe reduction: to 50 ppb by cryogenic distillation measured with new diagnostic tools (ATTA and RGMS)

Novel Calibration Sources:^{83m}Kr, 220Rn Improved Analysis Tools: Profile Likelihood

XENON100 WIMP Results

blind analysis with 225 Live Days of data yielded strong limits and one of the most cited XENON papers

S1 [PE]

15

10

0.4

0.2

0.0

-0.2

-0.4

20

25

30

45

15.3

50

250

XENON Collaboration, Dark Matter Results from 225 Live Days of XENON100 Data Phys. Rev. Lett. 109, 181301 (2012)

- The first tonne-scale LXeTPC, with a 2-tonne active mass.
- 1m diameter and height with 248 3" low-radioactivity PMTs
- TPC mounted in a cryostat suspended in center of a water Cerenkov muon veto detector

Extended infrastructure

REMOTE COOLING TOWERS

- 2 redundant towers with 240W pulse tube refrigerators
- 1 backup liquid nitrogen cooling tower (300W)
- CONTINUOUS GAS PURIFICATION
 - through heated getter @ ~ 50 slpm
- STORAGE & RECOVERY GXe or LXe
 - LN cooled 2 m diameter sphere (70 bar)
 - for clean Xe storage & fast LXe recovery from TPC
- DISTILLATION COLUMN for Kr REDUCTION
 - 5.5m-tall with high throughput: 3kg/h at 105 separation
 - achieved in situ natKr/Xe concentration of 0.36 ppt

XENON1T Background

 (82 ± 5) events / $(t \times yr \times keV_{ee})$ below 25 keVee

Lowest ER background achieved in a DM detector

Dominated by Pb214 from Rn222 (~ 10 uBq/kg)

XENON1T WIMP Results

 Final WIMP result used one tonne-year of data over two science runs, with world-leading sensitivity and limits

XENON1T WIMP Results

XENON1T WIMP Results

Ovbb DECAY <u>EPJ C (2020) 80:785</u> (analysis R&D)

> TECHNICAL ANALYSIS PAPERS PRD 99, 112009 PRD 100, 052014

PRD 102, 072004

XENONnT

XENON1T infrastructure and subsystems designed for a rapid and efficient upgrade for 10 x sensitivity gain.

New TPC with:

- 1.5 m drift and 1.3 m diameter
- 8.6 t of LXe with 5.9 t as active mass
- 494 3" low-radioactivity PMTs

New Neutron Veto detector with:

- 120 PMTs in 4m x 3m enclosure of reflective panels around TPC
- neutron tagging efficiency of 87% with Gd-doped water

See Emanuele Angelino Talk later

New Liquid Phase Purification System

- continuously remove e-negative impurities from the LXe at a rate of 2L/min through special filters via a cryogenic liquid pump
- 18hr for entire 8.6 tonnes of LXe
- E-lifetime >15 ms in science runs

New Radon Distillation Column

- Intrinsic 85 Kr and 222 Rn(-> {}^{214} Pb serious ER background.
- Rn emanates from materials. Avoid and remove continuously from both the both gas and liquid xenon at high flows via cryogenic distillation.
- Dedicated column used to reduce Rn level in XENONnT to 0.8 μBq/kg.

New Radon Distillation Column

- Intrinsic 85 Kr and 222 Rn(-> {}^{214} Pb serious ER background.
- Rn emanates from materials. Avoid and remove continuously from both the both gas and liquid xenon at high flows via cryogenic distillation.
- Dedicated column used to reduce Rn level in XENONnT to 0.8 μBq/kg.

Eur. Phys. J. C 82, 1104 (2022) [2205.11492] JINST 17 (2022) 05, P05037 [2203.01026]

29 institutions 200 scientists

BEYOND XENON: DARWIN/XLZD

- DARWIN: 50 t LXe (40 t active target in the TPC) at LNGS
- 1900 3-inch PMTs (baseline)
- Gd-doped water n and μ vetoes
- Funds for R&D and prototyping (with 3 ERCs)
- XLZD: 75 t LXe (60 t active target), several labs are considered
- Larger mass to reach sooner the neutrino fog limit (~1000 t x y)

DARWIN collaboration JCAP 1611 (2016) 017 Increased size brings new challenges

- DARWIN/XLZD: 2.6 3.0 m (LZ and XENONnT: 1.5 m drift length and ~ 1.5 m diameter electrodes)
 - Electrodes design
 - HV handling and drift field
 - Xe cooling for operation over multiple years

 - Liquid level control
 Cryogenic distillation of intrinsic radioactivitieness
 Cryogenic distillation of intrinsic radioactivitieness

- The XENON experiments with LXeTPCs of increasing target mass and decreasing background have been at the forefront of dark matter direct detection since 2007.
- The XENON1T phase saw the realization in 2017 of the first LXeTPC with multiple tons of Xe and with the lowest background of any dark matter experiment at the time.
- XENON1T demonstrated the scalability of the technology for dark matter searches paving the way for the current PandaX-4T, XENONnT and LZ scale experiments.
- The development of new enabling systems, the liquid purification and the radon removal column, was critical to achieve the further scale-up of target mass and background reduction of the XENONnT phase.
- XENONnT continues to accumulate data to explore the WIMP paradigm and beyond, and it will continue to pave the way towards DARWIN/XLZD.