Innovation and evolution of the NEWS-G dark matter experiment

Jean-Marie Coquillat

ESDU-Tools, Noirmoutier

June 6th, 2024

Dark matter theory

- Dark matter (DM) evidence:
	- First Zwicky (1933): Visible mass of galaxies much lower than expectation from virial theorem.
	- Rotation curves have velocities stay higher than expected from Kepler's 3rd law.
	- Fits on the CMB show 85% of the Universe's mass as non-baryonic matter
	- Gravitational lensing shows the actual mass distribution of galaxies. Most of the Bullet cluster's mass is invisible and less interacting.

30

500

 $\Delta \mathcal{D}^T_\ell$

150

NGC 6503

gas

30

20

2500

500

Low mass WIMP search motivation

Given the absence of canonical WIMPs, there is motivation to look at the parameter space left at lower masses (~0.1-1 GeV) for WIMP-like dark matter candidates.

NEWS-G and SPCs

- The NEWS-G experiment uses spherical proportional counters (SPC) to search for low mass dark matter.
- SPCs are metallic spheres filled with gas, with a central anode producing a radial electric field.
- The [last dark matter limits](https://www.sciencedirect.com/science/article/abs/pii/S0927650517301871) are from the SEDINE detector (60 cm diameter) at the *Laboratoire Souterrain de Modane* (LSM) in 2017.
- The latest detector, S140, is a 140 cm of diameter copper sphere which took data at the LSM in 2019, before being shipped to SNOLAB where it is currently taking data since 2022.

The SEDINE detector

[doi: 10.1016/j.astropartphys.2017.10.009](https://www.sciencedirect.com/science/article/abs/pii/S0927650517301871)

How an SPC works:

- 1. Atomic recoil causes ionization of the gas.
- 2. Primary electrons drift towards the central anode.
- 3. Townsend avalanche near the anode amplifies the signal.
- 4. Drifting secondary ions induce a current on the anode.

Sensor (achinos) anxiv:2301.05183

- NEWS-G now uses a multi-anode sensor that can achieve high gain while keeping a strong electric field at a high radius.
- The sensor is divided in two channels connecting the anodes of each hemisphere.
- A signal on one channel induces a negative signal on the other one (Shockley-Ramo effect).
- About 2/3 of the volume leads to the south anodes, due to the effect of the rod on the electric field.

0.6 Fraction of South Electrons
ဗုဒ္ဓ ဗုဒ္ဓ
ဗုဒ္ဓ ဗုဒ္ဓ 0.4 \mathbf{O} . Z [mm] -0.2 -0.4 -0.6 0.6 10^{3} 1.0 Only pure south events are kept as candidate events.

Shielding and data taking with S140

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

SNOLAB detector paper

[doi:10.1088/1748-0221/18/02/T02005](https://doi.org/10.1088/1748-0221/18/02/T02005)

- The sphere is made of C10100 copper, with the inner 0.5 mm being electroformed ultra-pure copper.
- $\frac{1298 \text{ m}}{2}$ Lead, archeological lead and polyethylene (PE) make the shielding, although water was used at the LSM since the PE shield was unfinished.
	- 10 days of physics data taken in 135 mbar of CH₄ at the LSM before the detector was shipped to SNOLAB.
	- More time in SNOLAB to try more gas mixtures. Already 2 weeks with 1 bar of Ne + 2%CH $_{\rm 4}$. Now taking $Ar + 5\% CH_4$ data.

Calibration

- A UV laser is directed at the inner copper surface of the sphere and releases electrons though the photoelectric effect. The UV light also goes to a photodetector so the laser events can be tagged.
- Some argon-37 is released inside the sphere, and the gas diffuses in the whole volume. This isotope is radioactive and has two peaks that enable energy calibration.
- Ionization yield (W-value) for CH_a measured at Queen's University.
- The nuclear quenching factor was [measured at COMIMAC](https://doi.org/10.1140/epjc/s10052-022-11063-9) as well as [obtained from literature W-values](https://doi.org/10.1016/j.astropartphys.2022.102707).
- New lower energy quenching factor measurements are planned at UdeM and RMTL, with the backing detector Rod currently being built.

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

 $W_0 = 30.0^{+0.14}_{-0.15}$ eV, $U = 15.70^{+0.52}_{-0.34}$ eV, $F = 0.43 \pm 0.05$ 300 THELIMINARY ³⁷Ar Data 250 200 $150 \frac{\text{200}}{\text{4}}$ peak 2.8 keV 100 peak -50 250 $200 \sqrt{y^9}$ 150 $80^{\circ k}$ Risetine 100 % 2000 4000 6000 8000 10000 12000 14000 Ω [doi:10.1088/1742-6596/2156/1/012059](https://iopscience.iop.org/article/10.1088/1742-6596/2156/1/012059)

8

Peak counting and time separation

- The exponential decay of the preamplifier and the ion response are deconvolved from the raw signal.
- It is possible to count individual primary electrons.
- Surface events experience more diffusion than volume events, which causes the time separation between the first and last peak to be larger.

SURFACE (laser)

 $35C$ Time separation [µs]

9

[scipost_202210_00005v1](https://scipost.org/preprints/scipost_202210_00005v1/)

VOLUME

Counts 350

300

 250

200

 $150¹$

 $100₁$

 50

50

(³⁷Ar)

Alpha contamination

- There is \sim 25 mHz of alphas from either 222 Rn or 210 Po contamination in the copper surface.
- Alphas ionize a lot of gas and create a space charge that disturbs the electric field, and changes the electron drift time.
- Probably due to attachment, a high rate of low energy events keep happening for around 5s after each alpha.
- We remove most of the low-energy background due to alphas with a 5s cut after each one, keeping 85-90% of the total time.

Alphas in SNOLAB

- SNOLAB still has an alpha background with a similar rate. Etching of the inner surface has not removed the alphas.
- The increased rate of events after alphas is correlated with the impurity of the gas.
- The leading theory is that negative ions cause the delayed signals in the seconds after alpha events.

Pulse shape discrimination

- In the LSM, there were spurious pulses caused by electronic discharges in the data.
- Those can be discriminated from physical events with two different methods:
	- Spurious pulses are either measurably spikier or wider than physical events.
	- Spurious pulses do not cause a negative induced pulse on the opposite channel.
- Around 95% of the spurious pulses are removed with cuts usings theses discriminants, while still keeping 77% of the physical events.
- In SNOLAB, spurious pulses have been less numerous due to having more time to fix the electronics and remove them from the source.

Noise and data taking

Improvements from LSM:

- Trigger on three channels (North, South, PD) instead of only one at a time
- Reduced noise
- Better gas purity
- Gas purifier from University of Birmingham
	- Oxygen removal from copper balls and molecular sieve
- Silver zeolite radon trap from University of Alberta
	- New installation this week after adjustments
- Time to try multiple gas mixtures: Ne +2%CH $_{4}$, Ar+CH $_{4}$, Ne+7%CH $_{4}$, CH $_{4}$, He+CH $_{4}$ etc.

Radon trap Gas purifier

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

LSM preliminary limits

- 30% of the full data was set aside as a test data before the rest is unblinded.
- Profile likelihood fits of the test data were made for 2-3-4 peak data
- Fits with contributions from surface background, coincidences and WIMP signal.
- No significant WIMP signal was detected. WIMP exclusions limits with ~0.12 kg·days of data
- Strongest constraints for the proton spin-dependent interaction in the 0.2 - 1.5 GeV range.
- Final blind data results to come soon: paper currently in internal review.

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

SNOLAB data analysis

Here are some preliminary results from the neon data taken in Winter 2023:

- Laser calibration fits show the contributions from all numbers of primary electrons.
- MCMC fits of ³⁷Ar data show the different gains of each southern anode of the sensor.
- Physics test data hints at a lesser contribution from the single-electron background compared to the LSM.

NEWS-G³ (or G3)

- SPCs can also be used for neutrino research.
- Shield at Queen's University intended for CEνNS detection at nuclear reactors.
- The shield is comprised of multiple layers of lead, polyethylene, scintillators (muon veto) and copper. It was completed 2 years ago.
- Tests, simulations and calibrations are currently being done at Queen's.

Conclusion

• NEWS-G and SPCs well suited for low mass dark matter search.

- LSM data able to set new SD-p WIMP constraints with CH₄.
- Currently taking improved physics data at SNOLAB.

• Expecting even better results from the SNOLAB data.

More details on the future generation of NEWS-G from Kostas tomorrow at 14:20.

EDSU-Tools 2024 - Jean-Marie Coquillat - June $6th$

Extra slides

Quenching factor

Quenching Factor of H in CH4

Future projects

- ECuME (& miniECuME):
	- Fully underground electroformed 140 cm of diameter copper sphere in SNOLAB. (tests ongoing at PNNL)
- DarkSPHERE:
	- Fully electroformed 3m of diameter sphere in a water shield. (under consideration)
- NEWS-G3:
	- Shield at Queen's University intended for CEνNS detection at nuclear reactors.

(shield completed, started testing)

Introduction

 \triangleright A nuclear recoil and an electronic recoil of the same energy do not produce the same amount of primary $\frac{E_{ee}}{QF(E_{nr})} = \frac{E_{ee}}{E_{nr}}$ ionization

- \triangleright Very important to know the actual nuclear recoil energy spectra: dark matter sensitivity
- > NEWS-G: a sub-GeV dark matter search experiment by measuring elastic scattering of WIMP off the target nuclei (He, Ne) in a spherical proportional chamber (SPC) gaseous detector
- \triangleright Quenching factor measurement is essential for the detector calibration for nuclear recoil events

Past measurements at TUNL

- \triangleright Quenching factor measurements at TUNL (Duke tandem facility)
- \ge The nuclear recoil energies covered were 0.34 to 6.8 keV nr

New Avenues

UdeM

> Possibility to go to ~10 times lower energy than TUNL ~5keV

- $\frac{51}{10}$ ⁵¹V(p,n) as target offering large number of near threshold resonances
- > Better rejection to gamma background by B-10 neutron capture

RMTL

- > Protons can be accelerated up to 8 MeV, high beam current 0.05-45 µA
- \triangleright It is a quasi-monoenergetic neutron beam. Neutron filters with new beamline

5 MV Tande

Backing detector for quenching factor measurements

 \mathbf{n}

OF measurements with neutron scattering

- Low energy neutron beam at university of Montreal
- Building a backing detector at Queen's for QF measurements
- Better angular covererage
- Detection efficiency 27% at 2 keV
- Mean neutron capture time 17 µs

Muon-veto validation

In-shield characterization/simulation

- **GEANT4** simulation \bullet
- Panel validation

Expected number of CevNS events

21

Making the sphere, electroforming, etching

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

Birmingham Purifier

- •oxygen removal
- •copper balls + molecular sieve
- •installed at SNOLAB
- •few 10mBq radon

Radon trap

- •silver zeolite
- •tested at UoA
- •in 10cm long, 10mm diameter SS pipe
- •installed at SNOLAB
	- •too much resistance for circulation
	- •wider and 5x larger trap under construction (in CF40 pipe (34mm diameter))

Gas mixture and calibration (laser and ³⁷Ar)

[doi:10.1088/1742-6596/2156/1/012059](https://iopscience.iop.org/article/10.1088/1742-6596/2156/1/012059)

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

doing a double deconvolution of the raw signal, and then integrating the pulses.

4000

microseconds

5000

5500

4500

2500

3000

3500

Alpha background

There is ²¹⁰Po contamination in the copper surface, which causes alphas that ionize a lot of gas. All the ions create a space charge that disturbs the electric field, and changes the electron drift time. For some still unknown reason, a high rate of low energy events keep happening for around 5s after each alpha.

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

Spikiness

1st comparison method Spikiness

North/South integral ratio

2nd comparison method N/S ratio

Linear Fisher discriminant

Optimal comparison: Combining both methods

Fits to the physics data

The separation between electron and spike events is weaker at lower energies.

Wide pulses are another dominant background of unknown origin in the data.

A cut on N/S removes fat pulses (dominant in 2-peak data) and a Fisher discrim. cut removes spikes.

3

 \blacksquare

SNOLAB noise

EDSU-Tools 2024 - Jean-Marie Coquillat - June 6th

SNOLAB space charge

wj19s00x: 993 mbar of Ne+2%CH4, no source, HV1=1140V, HV2=1200V, laser at 130A w/ 10Hz

wj21s00x: 993 mbar of Ne+2%CH₄, no source, HV1=1140V, HV2=1200V, laser at 130A w/ 10%

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

EDSU-Tools 2024 - Jean-Marie Coquillat - June $6th$

EDSU-Tools 2024 – Jean-Marie Coquillat – June $6th$

Radon Plate-out and the Effects of Airflow and Electric Charge for Dark Matter Experiments - Scientific Figure on ResearchGate. Available from: [https://www.researchgate.net/figure/Uranium-](https://www.researchgate.net/figure/Uranium-238-decay-chain-As-shown-in-Figure-2-the-decay-chain-of-238-U-involves-the_fig2_377611580)[238-decay-chain-As-shown-in-Figure-2-the-decay](https://www.researchgate.net/figure/Uranium-238-decay-chain-As-shown-in-Figure-2-the-decay-chain-of-238-U-involves-the_fig2_377611580)[chain-of-238-U-involves-the_fig2_377611580](https://www.researchgate.net/figure/Uranium-238-decay-chain-As-shown-in-Figure-2-the-decay-chain-of-238-U-involves-the_fig2_377611580) [accessed 23 May, 2024]

