The XENONnT

Neutron Veto: Status and Latest Results

EDSU-Tools 2024

Emanuele Angelino on behalf of the XENON collaboration

emanuele.angelino@Ings.infn.it INFN Laboratori Nazionali del Gran Sasso Île de Noirmoutier, France Village Les Quatre Vents, L'Épine Thursday, 6th June 2024

The XENON project

Direct search for dark matter (DM) with **liquid xenon (LXe)** deep underground at the INFN **Laboratori Nazionali del Gran Sasso** (LNGS) in Italy

The XENONnT Neutron Veto: Status and Latest Results

The XENON project

Direct search for dark matter (DM) with **liquid xenon (LXe)** deep underground at the INFN **Laboratori Nazionali del Gran Sasso** (LNGS) in Italy

The XENONnT Neutron Veto: Status and Latest Results

Emanuele Angelino

01/10

The XENONnT Neutron Veto: Status and Latest Results

Emanuele Angelino

EDSU-Tools 2024, Île de Noirmoutier, France

02/10

Dual phase Xe Time Projection Chamber

5.9 t active target mass, 8.5 t total mass

1.5 m drift length, 1.3 m diameter

494 Hamamatsu 3" PMTs

TPC

02/10

nVeto

Dual phase Xe Time Projection Chamber

5.9 t active target mass, 8.5 t total mass

1.5 m drift length, 1.3 m diameter

494 Hamamatsu 3" PMTs

(Gd-)Water Cherenkov Neutron Veto

33 m³ volume around cryostat

120 8" high QE PMTs

High reflectivity expanded PTFE

TPC

02/10

Dual phase Xe Time Projection Chamber

5.9 t active target mass, 8.5 t total mass

1.5 m drift length, 1.3 m diameter

494 Hamamatsu 3" PMTs

(Gd-)Water Cherenkov Neutron Veto

33 m³ volume around cryostat **120** 8" high QE **PMTs**

High reflectivity expanded PTFE

nVeto

(Gd-)Water Cherenkov Muon Veto 700 t water, 84 8" high QE PMTs

Active veto against muon-induced neutrons (n)

Passive veto against $\boldsymbol{\gamma}$ and \boldsymbol{n} from natural radioactivity

mVeto

TPC

3 nested detectors inside the Water Tank

Cryogenics, Slow Control, Recovery & Purification systems in the Service Building

Triggerless DAQ which can operate TPC, nVeto and mVeto as a single system or independently

The XENONnT Neutron Veto: Status and Latest Results

Emanuele Angelino

EDSU-Tools 2024, Île de Noirmoutier, France

The XENONnT Neutron Veto: Status and Latest Results

Emanuele Angelino

EDSU-Tools 2024, Île de Noirmoutier, France

Neutrons emitted from **materials** (e.g. cryostat, PMTs, PTFE, ...) can **scatter** off LXe atoms in the **TPC**, inducing **nuclear recoils** (NR), in the **same way** as **WIMPs**

Since **neutrons** in **LXe** have interaction length of **O(10) cm**, they can be identified if a **second interaction** occurs inside the active volume (**multiple scatter**)

If **neutrons** after the interaction in the TPC **exit (single scatter)**, they **cannot** be **distinguished** from **WIMPs**

The XENONnT Neutron Veto: Status and Latest Results

Neutrons emitted from **materials** (e.g. cryostat, PMTs, PTFE, ...) can **scatter** off LXe atoms in the **TPC**, inducing **nuclear recoils** (NR), in the **same way** as **WIMPs**

Since **neutrons** in **LXe** have interaction length of **O(10) cm**, they can be identified if a **second interaction** occurs inside the active volume (**multiple scatter**)

If neutrons after the interaction in the TPC exit (single scatter), they cannot be distinguished from WIMPs

Neutron Veto (NV) designed for otherwise irreducible background

Designed to operate with Gd-loaded water

Neutron **capture** on **H** or **Gd** nuclei, with emission of ~ **MeV gammas**

Gammas make Compton scattering off electrons, which emit Cherenkov light

The XENONnT Neutron Veto: Status and Latest Results

Neutrons emitted from **materials** (e.g. cryostat, PMTs, PTFE, ...) can **scatter** off LXe atoms in the **TPC**, inducing **nuclear recoils** (NR), in the **same way** as **WIMPs**

Since **neutrons** in **LXe** have interaction length of **O(10) cm**, they can be identified if a **second interaction** occurs inside the active volume (**multiple scatter**)

If neutrons after the interaction in the TPC exit (single scatter), they cannot be distinguished from WIMPs

Neutron Veto (NV) designed for otherwise irreducible background

Designed to operate with Gd-loaded water

Neutron **capture** on **H** or **Gd** nuclei, with emission of **~ MeV gammas**

Gammas make Compton scattering off electrons, which emit Cherenkov light

SRO	Nominal	ominal Best fit		
NV cut applie	ed R	ROI		
ER	134	135^{+12}_{-11}	0.92 ± 0.08	
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16	
CE <i>v</i> NS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006	
AC	4.3 ± 0.9	$4.4_{-0.8}^{+0.9}$	0.32 ± 0.06	
Surface	14 ± 3	12 ± 2	0.35 ± 0.07	
Total background	154	152 ± 12	$2.03\substack{+0.17 \\ -0.15}$	
WIMP		2.6	1.3	
Observed		152	3	
	<u>Phys. Rev. Lett. 131, 041003, 2023</u>			

Thanks to new **background reduction** techniques, **electronic recoils** now **comparable** to radiogenic **neutrons** in **signal-like** region

First Science Run (SRO) performed with demineralized water in Water Tank (WT)

Large light collection efficiency with high-reflectivity ePTFE panels

LED calibration for **PMT Gain** and **Laser** calibration for **transparency** monitor

The XENONnT Neutron Veto: Status and Latest Results

Emanuele Angelino

EDSU-Tools 2024, Île de Noirmoutier, France

Neutron calibration with AmBe

AmBe calibration source placed close to cryostat (same signature of radiogenic neutrons from detector materials)

4.4 MeV gamma (γ) **emission** with **neutron** in about **50%** of cases

First **4.4 MeV** γ detected in **NV**, then coincidence requirement for **nuclear recoil** in **TPC**, hence search for **signals** from **neutron capture** in **NV**

The XENONnT Neutron Veto: Status and Latest Results

Neutron calibration with AmBe

04/10

AmBe calibration source placed close to cryostat (same signature of radiogenic neutrons from detector materials)

4.4 MeV gamma (γ) **emission** with **neutron** in about **50%** of cases

First **4.4 MeV** γ detected in **NV**, then coincidence requirement for **nuclear recoil** in **TPC**, hence search for **signals** from **neutron capture** in **NV**

Direct measurement of neutron tagging efficiency

After background subtraction, at **5-fold** coincidence, **5 PE** threshold, **600 µs** time windows: **(68 ± 3) %**

Average capture time in demi-water of about 180 µs

Highest neutron detection efficiency ever measured in a water Cherenkov detector

In Science Run 0, **time** window shortened to **250 µs** to **reduce** induced **dead time**

Then, neutron **tagging** efficiency is **(53 ± 3) %** with **1.6% livetime loss**

The XENONnT Neutron Veto: Status and Latest Results

Emanuele Angelino

EDSU-Tools 2024, Île de Noirmoutier, France

Neutron Veto in XENONnT Science Run 0

Neutron background originated mostly from PMTs, cryostat and PTFE components

Signals in TPC can be attributed to neutrons from detector materials if, differently from WIMPs, multiple-site energy deposit occurred (multiple scatter)

Neutron Veto in XENONnT Science Run 0

Neutron background originated mostly from PMTs, cryostat and PTFE components

Signals in TPC can be attributed to neutrons from detector materials if, differently from WIMPs, multiple-site energy deposit occurred (multiple scatter)

4 events in the WIMP blinded region tagged by NV and excluded: 3 multiple scatter (MS) + 1 single scatter (SS)

In agreement with MS/SS ratio of about 2.5 obtained from MC and AmBe calibration data

Neutron Veto in XENONnT Science Run 0

Neutron background originated mostly from PMTs, cryostat and PTFE components

Signals in TPC can be attributed to neutrons from detector materials if, differently from WIMPs. multiple-site energy deposit occurred (multiple scatter)

4 events in the WIMP blinded region tagged by NV and excluded: 3 multiple scatter (MS) + 1 single scatter (SS)

In agreement with MS/SS ratio of about 2.5 obtained from MC and AmBe calibration data

Considering NV tagging efficiency of 53%, the total neutron expectation is 1.1^{+0.6} events

This result is 6x higher than predictions from material screening (ongoing checks to understand the discrepancy)

In SRO, NV had relevant role in **constraining** this specific background in a data-driven way

Neutron Veto with Gd-loaded water

06/10

Neutron capture cross-section		γ energy	Mean capture time	
н	0.33 b	Single γ, 2.2 MeV	200 us	
Gd	49000 b	3-4 γ, 8 MeV in total	30 us*	

Neutron Veto designed to tag neutrons following their capture on Hydrogen or Gadolinium nuclei after thermalization in water

In the **first** Science Runs, **Gadolinium not yet** present in WT

Novel **Gd-Water Purification System (GdWPS)** has been **commissioned** and **procedure** for **insertion** and **dissolution** of **Gd-sulfate (GdSO)** has been **tested**

The **Gd-Water Purification System**, developed with **technology** from **EGADS** project, is needed to keep good water conditions.

* for a 0.2% Gd mass concentration

Neutron Veto with Gd-loaded water

07/10

Neutron capture cross-section		γ energy	Mean capture time	
н	0.33 b	Single γ, 2.2 MeV	200 us	
Gd	49000 b	3-4 γ, 8 MeV in total	30 us*	

Neutron Veto designed to tag neutrons following their capture on Hydrogen or Gadolinium nuclei after thermalization in water

In the first Science Runs, Gadolinium not yet present in WT

Novel **Gd-Water Purification System (GdWPS)** has been **commissioned** and **procedure** for **insertion** and **dissolution** of **Gd-sulfate (GdSO)** has been **tested**

Gadolinium Sulfate Octahydrate $(Gd_2(SO_4)_3 \cdot 8H_2O)$ **injected** into **WT** through GdWPS in various steps

Reached **0.02 % Gd mass concentration** which corresponds to **350 kg** of GdSO (**500 ppm GdSO**)

With Gd, expected neutron tagging efficiency of about 77%

* for a 0.2% Gd mass concentration

GdSO is transported underground in a **sealed** container, and **transferred** in the **mixing tank** with a **pneumatic tool**

The **Gd-Water Purification System**, developed with **technology** from **EGADS** project, is needed to keep good water conditions. L. Marti et al., NIMA 959, 163549 (2020)

Neutron Veto response after Gd insertion

08/10

AmBe calibration **source far** from **cryostat** (**50 cm**) to characterize NV **response** along time: **area spectrum** can be **modeled** with:

- 2.2 MeV peak (H capture) 1 Gaussian with threshold
- 4.4 MeV peak (¹²C de-excitation) → 1 Gaussian with threshold
- About 8 MeV peak (Gd capture) → 2 Gaussians with threshold
- High energy tail (higher level ¹²C de-excitations or n captures on ⁵⁶Fe) → 2 Gaussians

Mean area and amplitude correspond to mean collected light (that depends on NV optical properties) and neutron captures

Neutron Veto response after Gd insertion

08/10

AmBe calibration source far from cryostat (50 cm) to characterize NV response along time, area spectrum can be modeled with:

- 2.2 MeV peak (H capture) 1 Gaussian with threshold
- 4.4 MeV peak (¹²C de-excitation) → 1 Gaussian with threshold
- About 8 MeV peak (Gd capture) → 2 Gaussians with threshold
- High energy tail (higher level ¹²C de-excitations or n captures on ⁵⁶Fe) → 2 Gaussians

Mean area and amplitude correspond to mean collected light (that depends on NV optical properties) and neutron captures

Neutron Veto response after Gd insertion

08/10

AmBe calibration source far from cryostat (50 cm) to characterize NV response along time, area spectrum can be modeled with:

- 2.2 MeV peak (H capture) 1 Gaussian with threshold
- 4.4 MeV peak (¹²C de-excitation) → 1 Gaussian with threshold
- About 8 MeV peak (Gd capture) → 2 Gaussians with threshold
- High energy tail (higher level ¹²C de-excitations or n captures on ⁵⁶Fe) → 2 Gaussians

Mean area and amplitude correspond to mean collected light (that depends on NV optical properties) and neutron captures

Neutron tagging efficiency with Gd

.

AmBe calibration with source close to cryostat (~1 cm) → events with same characteristics of neutron emitted from detector materials

The XENONnT Neutron Veto: Status and Latest Results

Emanuele Angelino

EDSU-Tools 2024, Île de Noirmoutier, France

Neutron tagging efficiency with Gd

AmBe calibration with source close to cryostat (~1 cm) → events with same characteristics of neutron emitted from detector materials

Neutron capture time and area spectrum can be estimated by using NV only (self-trigger), by looking for NV events following 4.4 MeV signals from AmBe source in NV

At 500 ppm GdSO, average neutron capture time around 76 µs (2x shorter than in demi-water) and larger average area, with a 10% increase in neutron captures.

Neutron tagging efficiency with Gd

AmBe calibration with source close to cryostat (~1 cm) → events with same characteristics of neutron emitted from detector materials

Neutron capture time and area spectrum can be estimated by using NV only (self-triager). by looking for NV events following 4.4 MeV signals from AmBe source in NV

At 500 ppm GdSO, average neutron capture time around 76 µs (2x shorter than in demi-water) and larger average area, with a 10% increase in neutron captures.

Tagging efficiency is estimated by requiring coincidence with nuclear recoils detected in the TPC Neutron tagging efficiency with 500 ppm of GdSO, in a 250 us time-window, is about 77% (about 53% in SRO): → a factor 2 neutron background reduction wrt SR0 with demi-water

Conclusions and future perspective

10/10

IN A NUTSHELL

Radiogenic **neutron** background now **relevant** for DM direct search

XENONnT **nVeto** with **demi-water** reached **53% neutron tagging efficiency** in **250** μs time window (68 % in 600 μs)

Currently, nVeto is doped with 500 ppm GdSO (0.02% Gd mass concentration), neutron tagging efficiency increased up to 77%, with neutron background reduction by factor 2 wrt to SRO

Conclusions and future perspective

10/10

IN A NUTSHELL

Radiogenic **neutron** background now **relevant** for DM direct search

XENONnT **nVeto** with **demi-water** reached **53% neutron tagging efficiency** in **250** µs time window (68 % in 600 µs)

Currently, nVeto is doped with **500 ppm** GdSO (**0.02% Gd mass** concentration), neutron **tagging efficiency** increased up to **77%**, with neutron **background reduction** by **factor 2** wrt to SRO

WHAT'S NEXT

Planned **XENONnT** nVeto with **3.5 t** of **GdSO** (0.5% of GdSO, **0.2 % Gd mass concentration**), with **tagging efficiency** of **87%**

Neutron background will be further reduced by factor 3 wrt to SR0

Gd-loaded water technology can be effectively **employed** for **next-generation** LXe detector

Conclusions and future perspective

IN A NUTSHELL

Radiogenic **neutron** background now **relevant** for DM direct search

XENONnT **nVeto** with **demi-water** reached **53% neutron tagging efficiency** in **250** µs time window (68 % in 600 µs)

Currently, nVeto is doped with **500 ppm** GdSO (**0.02% Gd mass** concentration), neutron **tagging efficiency** increased up to **77%**, with neutron **background reduction** by **factor 2** wrt to SRO

WHAT'S NEXT

Planned XENONnT nVeto with 3.5 t of GdSO (0.5% of GdSO, 0.2 % Gd mass concentration), with tagging efficiency of 87%

Neutron background will be further reduced by factor 3 wrt to SR0

Gd-loaded water technology can be effectively **employed** for **next-generation** LXe detector

NEXT-GENERATION LXe EXPERIMENT

10/10

Dual-phase Xe TPC with ~60 t of active LXe, from the joint efforts of XENON, LZ and DARWIN collaboration into the XLZD consortium

Multi-purpose observatory for dark matter, neutrino and rare events, probing WIMPs down to neutrino floor

The XENONnT Neutron Veto: Status and Latest Results

EDSU-Tools 2024, Île de Noirmoutier, France

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

EDSU-Tools 2024

Merci pour votre attention!

facebook.com/XENONexperiment/ instagram.com/xenon_experiment/ twitter.com/xenonexperiment

CONTACT XENON xe-pr@lngs.infn.it

XENON OFFICIAL WEBSITE www.xenonexperiment.org/

Questions?

Dual-phase Time Projection Chamber

→ S1

ENERGY RECONSTRUCTION

from combining S1 and S2 signals

3D POSITION RECONSTRUCTION

x-y from PMTs light pattern, z from drift time

RECOIL TYPE IDENTIFICATION

S2/S1 different for **Electronic Recoils** (**ER**) and **Nuclear Recoils** (**NR**), resulting in two bands

Electronic Recoils

Electrons, photons, neutrinos, (axions ...)

Nuclear Recoils

Neutrons, neutrinos via coherent scattering, (WIMPs ...)

In **dual-phase** Time Projection Chamber (**TPC**) **scintillation** and **ionization** signals:

- **Prompt scintillation** light
- Secondary scintillation proportional to drifted electrons → S2

Upgrades in XENONnT

- **3x** larger **active** mass and **4x** larger **fiducial mass** with **lower material background**
- **2x PMTs** and **better light collection** efficiency
- **Triggerless** Data Acquisition: all data above threshold stored long term
- Additional LXe purification: e-lifetime 0.65 ms → 15 ms
- Radon Distillation: ²²²Rn suppressed to ~1.8 µBq/kg

Radon Removal System

- ²²²Rn (major ER background) mostly from pipes, cables and cryogenic system
- Continuous distillation at ~70kg/h
- 4.3 μ Bq/kg \rightarrow 1.8 μ Bq/kg in SR0 & 0.8 μ Bq/kg in SR1

LXe purification

- Removing electronegative impurities (H₂O and O₂)
- Only ~14% charge loss for a full drift length 1.5m
- Purification up to 16 tonne/day

LXe purification

Richard Removal System: Cxe-only mode Cxe-only L² B/Bg/kg L² B/B

Radon Removal System

The XENONnT Neutron Veto: Status and Latest Results

XENONnT Science Run 0

Science Run 0 (SRO)

- Electronic and Nuclear Recoils search data
- 97.1 days of exposure from July 6th Nov 11th 2021 (95.1 days lifetime corrected)
- Duration optimized to investigate XENONIT Low-E ER excess
- Fiducial Volume: 4.18 ± 0.13 tonne for NR and 4.37 ± 0.14 tonne for ER search
- Exposure: about 1.1 tonne-year
- **Blind** analysis in FV and low energy region for both NR and ER

Detector configuration in SR0:

- Drift field: 23 V/cm
- Extraction field in LXe: 2.9 kV/cm
- 477 out of 494 PMTs working
- Localized high single-electron emission sporadically, anode ramped down

WIMP searches NR background

ELECTRONIC RECOILS (ER)

- **Dominated by ²¹⁴Pb** (from ²²²Rn)
- Suppressed by **ER/NR separation**

ACCIDENTAL COINCIDENCE (AC)

- Random pairing of isolated S1/S2
- Suppressed by analysis cuts

SURFACE

- ²¹⁰Pb plate-out during construction
- **Radial** selection

NUCLEAR RECOILS (NR)

- **Radiogenic** neutrons: fission & (α, n)
- **CEvNS**: Solar & atmospheric **neutrinos**

ER	AC	Surface
134	4.3 ± 0.2	14 ± 3
Neutrons	CEvNS	Total
1.1 ^{+0.6} -0.5	0.23 ± 0.06	154

WIMP searches results

- 152 events in NR/ER search region
- 16 in NR blinded region
- No significant excess
- Best fit assuming a 200 GeV/c² WIMP and σ = 2.5 × 10⁻⁴⁷ cm²

	Nominal	Be	est fit	4.4 t fiducial volume
	ROI		Signal-like	
ER	134	135^{+12}_{-11}	0.92 ± 0.08	1.1 t x y
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16	exposure
CEvNS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006	
AC	4.3 ± 0.9	$4.4_{-0.8}^{+0.9}$	0.32 ± 0.06	
Surface	14 ± 3	12 ± 2	0.35 ± 0.07	
Total background	154	152 ± 12	$2.03_{-0.15}^{+0.17}$	
WIMP		2.6	1.3	
Observed		152	3	

containing 50% of a 200 GeV/c² WIMP signal with highest signal-to-noise ratio

GeV mass WIMP (assuming

there are WIMPs)

Limits on WIMP interactions with nucleons

Median upper limit at 90% confidence (Feldman-Cousin construction obtained by MC) for Log-Profiled Likelihood ratio (PDF in cS1, cS2, R)

WIMP discovery **p-value** indicates no significant excess

Power constraint limits (PCL) to avoid problematic spurious exclusion (too low exclusion limits) → Conservative PCL to 0.5 (median)

Upper limit for WIMP interactions σ, minimum at 2.6 × 10⁻⁴⁷ cm² at 28 GeV/c² (spin-independent), improvement by factor 1.7 wrt XENONIT

These limits are obtained for spin-independent (SI) process, similar results can be obtained also for spin-dependent (SD) interactions with protons or neutron in LXe nuclei

Limits on WIMP interactions with nucleons

Neutron calibration with AmBe source

Neutron calibration with AmBe source placed close to the cryostat

AmBe emits a 4.4 MeV gamma together with the neutron in about 50% of cases

Detect the **4.4 MeV** gamma, require the **coincidence** with a **single-scatter NR** event in the **TPC** and look for the **2.2 MeV** gamma of **neutron capture on H** in the nVeto

Direct measurement of the **neutron tagging efficiency** of the nVeto: (68 ± 3)% at 5-fold coincidence, 5 PE threshold and 600 us time window

Highest neutron detection efficiency ever obtained in a water Cherenkov detector!

In Science Run 0, time window reduced to 250 us to lower the dead time. The efficiency is (53 ± 3)%, and livetime loss is 1.6%.

Gd-water Purification System

- Preliminary filtration and treatment of Gd-water
- Separation via
 NanoFiltration (NF1 and NF2) into a Gd-rich part and a Gd-depleted part
- **Gd-rich** water sent directly into **Mixing Tank**
- **Gd-depleted** part **purified** via a standard water treatment as **Delonization**
- **Gd-depleted** then **mixed again** with the other branches
- **Return** to the main 700 t water tank of XENONnT, after other treatments

GdSO insertion in the Water tank

Gd-sulfate concentration in the system can be estimated with direct measurements of Gd via mass spectrometry (ICP-MS at LNGS chemistry lab), conductivity of small samples from WT (performed in situ) and conductivity measured by GdWPS inner sensor (online)

Neutron Veto optical properties

NV AmBe calibration average area evolution

n-captures on Gd as function of concentration

Fraction of neutrons captured on Gd as a function of its concentration in water by mass

Currently, nVeto doped with 500 ppm GdSO (0.02% Gd mass concentration), tagging efficiency increased up to 77%,

Planned XENONnT nVeto with 3.5 t of GdSO (0.5% of GdSO, 0.2 % Gd mass concentration), with tagging efficiency of 87%

L. Marti et al., NIMA 959, 163549 (2020)

Low-energy ER search in XENONnT

Component	Constraint	Fit
²¹⁴ Pb	(570, 1200)	960 ± 120
⁸⁵ Kr	90 ± 60	90 ± 60
Materials	270 ± 50	270 ± 50
¹³⁶ Xe	1560 ± 60	1550 ± 50
Solar neutrino	300 ± 30	300 ± 30
¹²⁴ Xe	• • •	250 ± 30
AC	0.70 ± 0.04	0.71 ± 0.03
¹³³ Xe	•••	150 ± 60
^{83m} Kr		80 ± 16

Background model including 9 components

Full **blind analysis** with various stages of unblinding

Spectral shape dominated by second order weak processes

¹²⁴Xe 2vDEC (half-life ~ 1.8 x 10²² yr, rarest process observed, first time in XENONIT) now used for energy reconstruction

²¹⁴Pb (from ²²²Rn chain) dominant component below 30 keV with concentration of about 1.3 μBq/kg (1 atom in 10 mol Xe)

An excess of the XENONIT magnitude is excluded at 8.60

XENONIT excess was probably due to ³H tritium

Low-energy ER results

Background ~5x smaller than in XENONIT. **Lowest ER background** ever for a **DM experiment:** (15.8 ± 1.3_{stat})events/(t · y · keV)

Leading **limits** among **non-astronomical** observation for physics **beyond standard model**

Solar axions

Neutrino magnetic moment

Neutrino searches in XENON detectors

Dark matter and neutrino detection

WIMP dark matter is expected to induce O(1)-O(10) keV NR scattering off xenon atoms, as well as neutrons

Coherent elastic neutrino nucleus scattering (CEvNS) has the same signature of low mass spin-independent WIMP interaction, producing low-energy NRs (via Z-exchange, \propto (A-Z)²)

Nuclear Recoil

CEvNS process, first measured in 2017 by COHERENT, has never been observed for solar neutrinos

Solar ⁸B, which is the main contributor, can be treated as a signal and detected in LXe DM experiment! **Current** detectors are approaching the **neutrino "fog**", where **distinction** between WIMPs and neutrinos is **challenging**

Neutrino "**floor**", indicated where DM experiment are inevitably limited by **irreducible background** from neutrinos

Solar ⁸B Neutrinos CEvNS search

INCREASED DETECTION EFFICIENCY

S1 threshold: 3 → 2 PMTs coincidence

S2 threshold: 200 → 120 PE

Expected total efficiency for CEvNS around 1%

Lower energy threshold → Background rate increased by two orders of magnitude

LOW-ENERGY BACKGROUND REDUCTION

Main background for CEvNS given by Accidental Coincidences (AC), resulting from random pairing of isolated S1s and S2s.

Various **mitigation** strategies: excluded events in **proximity** of **large peaks**, dedicated **selection** in **specific observables**, **machine learning** techniques and AC background modeling

- → PMT dark counts
- → Misidentified single electron
- → Below-cathode and surface events

Isolated S2s

 → Single electrons from delayed extraction or photo-ionization
 → Misidentified PMT afterpulses

Solar ⁸B Neutrinos CEvNS search

	Isolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	11	> 0.6 t × y

Lower drift field results in:

- larger isolated S2 rate
- **longer drift** time
- worst NR-ER discrimination, but negligible for CEvNS

Higher exposure in XENONnT

Larger AC rate but improved **AC suppression** with new techniques

Discovery potential in XENONnT should be increased

XENONNT will be more sensitive to solar ⁸B neutrino and a first observation could be within reach

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

Supernova neutrino

SUPERNOVA NEUTRINO CHANNELS IN XENONnT

→ TPC, 6 t of LXe

 $u_{e,\,\mu,\,\tau}\,, \bar{\nu}_{e,\,\mu,\,\tau}\,$ via **CEvNS** (charged and other neutral current are subdominant)

~ 100 expected events from supernova at 10 kpc

→ MUON & NEUTRON VETO, 700 t ultra-pure water $\overline{\nu}_{e}$ via **inverse beta** decay with H

~70 - 200 expected events from supernova at 10 kpc

PREDICTIONS

Neutrinos deposit around O(1) keV in LXe

Background stable in time, can be reduced with **specific selection** (similar to ⁸B search)

Possible improvements using **coincident** signals from **vetoes**

Supernova neutrino

SENSITIVITY PROJECTIONS

Cuts can reduce background down to ~3 Hz, while average signal (SN at 10 kpc) will results in ~45 events in ~ 6 s (~ 18 background events)

Triggerless DAQ allows continuous data taking and increases in rate with respect to a dynamic threshold can be monitored online

Considering signal evolution, time **window** can be **optimized**, resulting in ~8\sigma significance (10 kpc)

SNEWS INTEGRATION

XENONnT is **ready** to join the **Supernova Early Warning System** (**SNEWS**)

It will **receive** incoming **alerts** to check data and **send** possible **supernova observations**

xx/10

Neutrinoless double-beta decay in ¹³⁶Xe

In XENONNT ¹²⁴Xe & ¹³⁶Xe (0.1% and 8.9% abundancy) are long-lived isotope which produce detectable ER signals

First observation of ¹²⁴Xe 2vDEC in XENONIT demonstrated sensitivity to extremely rare events and can be used to constrain Nuclear Matrix Element (NME) calculations

2vββ-decaying ¹³⁶Xe isotope with $Q_{\beta\beta}$ = (2457.83 ± 0.37) keV is a good candidate for 0vββ

 $0\nu\beta\beta$ would demonstrate the violation of total lepton number and a nonzero Majorana component of neutrino mass ¹²⁴Xe & ¹³⁶Xe produce single site ER events due to LXe high stopping power

They became a major **background** for **electronic recoil** searches

Neutrinoless double-beta decay in ¹³⁶Xe

Expected **peak** at **2457.83** keV from $0\nu\beta\beta$ on top of **materials** background

Dedicated treatment of signals for saturation effects in **digitizers** and **PMTs** at **MeV** energies

XENONIT RESULTS

 $T^{0\nu\beta\beta}_{1/2}$ > 1.2 × 10²⁴ yr with tonne-scale fiducial mass, resulting in isotope exposure of 36.16 kg × yr

Best results for a non enriched target detector

XENONNT SENSITIVITY PROJECTION

With **275** kg × yr exposure, expected upper limit of $T^{0\nu\beta\beta}_{1/2} > 2.1 \times 10^{25}$ yr

Future xenon DM detector with **optimized** high-energy **backgrounds** and **larger exposure** can perform also Ονββ searches

ΝΟΤ COMPETITIVE YET WITH 0νββ EXPERIMENTS

Non-enriched target (dedicated experiments with 90% isotopic abundance)

Materials optimized for DM search (stainless steel cryostat)

Backup

