What happens when LEptons in Muonium are INteracting with Gravity?

LE

Anna Soter, ETHZ

Exciting week with a lot to learn!

Varnish coated copper clamps Four Patterned TES

- Why 3 generations?
- Tensions with lepton flavour universality

- Why 3 generations?
- Tensions with lepton flavour universality
- Origin of baryon asymmetry

- Why 3 generations?
- Tensions with lepton flavour universality
- Origin of baryon asymmetry
- Connection of gravity and dark sector to the SM

High energy

- Why 3 generations?
- Tensions with lepton flavour universality
- Origin of baryon asymmetry
- Connection of gravity and dark sector to the SM

ETH zürich

- Why 3 generations?
- Tensions with lepton flavour universality
- Origin of baryon asymmetry
- Connection of gravity and dark sector to the SM

High energy

High rate / precision

ETH zürich

Fundamental physics with exotic atoms

ETH zürich

4

Laser Spectroscopy

Purely **leptonic** exotic atom, dominated by QED effects:

- Fundamental constants (m_{μ} , μ_{μ} , R_{∞})
- Test of bound-state QED & symmetries (q_{μ}/q_{e})
- Effects on other precision experiments, e.g. muon g-2

$$E(1s - 2s) \simeq \frac{3}{4}q_e q_\mu R_\infty \Big(1$$

Free fall of Mu

Test of the Weak Equivalence Principle by measuring the coupling of gravity to:

- fundamental parameters of SM, in the absence of masses generated by the strong interaction
- second generation (anti)fermions of the SM only possible probe of this sector

Free fall of Mu

Test of the Weak Equivalence Principle by measuring the coupling of gravity to:

- fundamental parameters of SM, in the absence of masses generated by the strong interaction
- second generation (anti)fermions of the SM only possible probe of this sector

Free fall of Mu

Test of the Weak Equivalence Principle by measuring the coupling of gravity to:

- fundamental parameters of SM, in the absence of masses generated by the strong interaction
- second generation (anti)fermions of the SM only possible probe of this sector

6

Free fall of Mu

Test of the Weak Equivalence Principle by measuring the coupling of gravity to:

- fundamental parameters of SM, in the absence of masses generated by the strong interaction
- second generation (anti)fermions of the SM only possible probe of this sector

Free fall of Mu

Test of the Weak Equivalence Principle by measuring the coupling of gravity to:

- fundamental parameters of SM, in the absence of masses generated by the strong interaction
- second generation (anti)fermions of the SM only possible probe of this sector

Possibility to test for flavour-dependent new interactions

7

WEP and universality of free fall

Foundation of GR. Many formulations since Galilei:

The outcome of any *local* experiment conducted in gravitational field (local g acceleration) must be the same than in an accelerating lab, where a=g.

Needs to be tested in different experiments sensitive to one of the above

Various experimental consequences:

- ▶ Universality of free fall $\eta(1,2) = 2 \frac{|g_1 g_2|}{|g_1 + g_2|}$
- Local Lorentz invariance
- Local position invariance: universality of clocks, ▶ lack of variation of
 - fundamental constants

WEP and universality of free fall

Foundation of GR. Many formulations since Galilei:

The outcome of any *local* experiment conducted in gravitational field (local g acceleration) must be the same than in an accelerating lab, where a=g.

consequences:

- ▶ Universality of free fall $\eta(1,2) = 2 \frac{|g_1 g_2|}{|g_1 + g_2|}$
- Local Lorentz invariance
- Local position invariance:
 - universality of clocks,

Needs to be tested in different experiments sensitive to one of the above

Torsion pendula

 $\eta(\text{Be},\text{Ti}) = [0.3 \pm 1.8] \times 10^{-13}$ S.Schlamminger et al, Phys Rev Lett 100 (2008) 041101

Satellite experiments

 $\eta(\text{Ti,Pt}) = [1 \pm 9(\text{stat}) \pm 9(\text{syst})] \times 10^{-15}$ https://doi.org/10.1103/PhysRevLett.119.231101

Tests on the largest and smallest scales

Anna Soter 07.06.2024

Various experimental

- ▶ lack of variation of
 - fundamental constants

The challenges of measuring Mu gravity

Not possible with conventional Mu sources

Mu lifetime of 2.2 µs

 $\Delta x = \frac{1}{2}gt^2 < 1 \text{ nm}$

The challenges of measuring Mu gravity

Not possible with conventional Mu sources

Why it might be possible with LEMING

Anna Soter 07.06.2024

Mu lifetime of 2.2 µs

 $\Delta x = \frac{1}{2}gt^2 < 1 \text{ nm}$

We developed a novel Mu beam amenable to interferometry

9

The experimental setup(s)

- Muon beam p ~ 13 MeV/c, bent in 30° angle downwards
- Dilution fridge T ~ 170 mK now updated, large MXC plate T ~ 10 mK
- Cryogenic tracker and lowthreshold detectors

(1) Mu stop and recombination $p \approx 70 \%$

(1) Mu stop and recombination $p \approx 70 \%$

(1) Mu stop and recombination $p \approx 70 \%$

(1) Mu stop and recombination $p \approx 70 \%$

(2) Thermalization below the roton gap, $v_L \approx 60 \text{ m/s}$

(1) Mu stop and recombination $p \approx 70\%$

(2) Thermalization below the roton gap, $v_L \approx 60 \text{ m/s}$

(3) Ballistic diffusion (no collisions), $\tau_d \approx 1 \ \mu s *$ to surface

*other atoms don't do this. Clue for exception: antiprotonic helium in SFHe

A. Soter et al., Nature 603, 411-415 (2022)

(1) Mu stop and recombination $p \approx 70 \%$

(2) Thermalization below the roton gap, $v_L \approx 60 \text{ m/s}$

(3) Ballistic diffusion (no collisions), $\tau_d \approx 1 \ \mu s *$ to surface

(4) Ejection in the surface normal, due to the large positive chemical potential

antiprotonic helium in SFHe

- *other atoms don't do this. Clue for exception:
- A. Soter et al., Nature 603, 411-415 (2022)

(1) Mu stop and recombination $p \approx 70 \%$

(2) Thermalization below the roton gap, $v_L \approx 60 \text{ m/s}$

(3) Ballistic diffusion (no collisions), $\tau_d \approx 1 \ \mu s *$ to surface

(4) Ejection in the surface normal, due to the large positive chemical potential

antiprotonic helium in SFHe

- *other atoms don't do this. Clue for exception:
- A. Soter et al., Nature 603, 411-415 (2022)

Characterisation of the superthermal Mu beam

Anna Soter U7.U0.ZUZ4

Characterisation of the superthermal Mu beam

Anna Soter U7.U0.ZUZ4

Amenability of the atomic beam for interferometry

- Model: using mutual intensity functions from statistical optics
- Calculations assume a Gaussian Schellmodel beam

 $w_0 \sim beam width (aperture)$ $\ell_0 \sim transverse coherence length$

 ℓ_0 relates to the angular spread (α) of the atoms (via the Cittert-Zernike theorem) as:

 $\ell_0 \approx \frac{\lambda}{\alpha} \approx \frac{1.6 \text{ nm}}{50/2200} = 70 \text{ nm}$

 α ~ 22 mrad, and ℓ_0 ~ 70 nm - close to the grating pitch size

▷ Contrast = 0.3

Given there is enough high quality Mu atoms, might be feasible!

model based on: McMorran et al., PRA 78 (2008)

Horizontal cold Mu beam Atomic mirror / Microfluidic target

Anna Soter 07.06.2024

14

Horizontal cold Mu beam Atomic mirror / Microfluidic target

Interferometer

G1, G2 and mask M

14

Horizontal cold Mu beam Atomic mirror / Microfluidic target

Interferometer

G1, G2 and mask M

Horizontal cold Mu beam Atomic mirror / Microfluidic target

Interferometer

G1, G2 and mask M

Horizontal cold Mu beam Atomic mirror / Microfluidic target

Interferometer

G1, G2 and mask M

Novel source concept - microfluidic grating

Microfluidic grating prototype

Prototype made by Konstanins Jefimovs, LNQ, PSI

Microfluidic grating prototype

Acetone drying up from the grating

- Clear emission of Mu from the microfluidic target
- Stopped muon to vacuum muonium conversion efficiency seems ca. 1/2 of the free surface emission

Effected by background further studies are needed

Microfluidic grating prototype

Acetone drying up from the grating

- Clear emission of Mu from the microfluidic target
- Stopped muon to vacuum muonium conversion efficiency seems ca. 1/2 of the free surface emission

Effected by background further studies are needed

Projected sensitivity with high intensity muon beams

With $\lambda_{Mu} = 1.6$ nm (SFHe beam) $L_0=3$ mm, L=10 mm, d=100 nm, C=0.3 ($L_T = d^2/\lambda = 6 \ \mu$ m), $\eta=0.3$, $\epsilon=0.7$

Determining sign of g: less than a day with Mu source of $N_0 > 5 \cdot 10^5$ /s, C > 0.3

SFHe source @PSI:

10⁵/s -10⁶/s depending on muon beam scenarios

▶ l(p) ~ p^{3.5}
▶ Δp/p (FWHM) ~ 0.03 -0.1
▶ ΔE/E ~ 0.06 - 0.2

Beam	p [MeV/c]	Yield [µ⁺/s]	1σ [mm]	Yield in d = 10 mm	Aerogel, back implantation 23 MeV/c (3%)	fron
piE5	28	5×10 ⁸	8.5	9.8×10 ⁷	1.5×10 ⁶	
HiMB-3	28	1×10 ¹⁰	30	1.75×10 ⁸	2.6×10 ⁶	

Anna Soter 07.06.2024

Sensitivity over time

SFHe source, t implantation 12.5 MeV/c (10%)

0.6×10⁶*

1.1×10^{6} *

LEMING plans

- The test beamtimes are reaching a conclusion
- Experimental layout taking shape, and a full TDR is possible
- Emphasis expected to shift towards the interferometer

TDR Construction Data taking

2026 2027 2<mark>028</mark>

Plans 1: Cryogenic detector and source

Electron counter

- with SFHe film

J. Zhang et al 2022 JINST 17 P06024

Plans 1: Cryogenic detector and source

Electron counter

- with SFHe film

J. Zhang et al 2022 JINST 17 P06024

Interferometer prototyping

Impact beyond gravity, spin-offs

ÍN**Ø**

LE

22

Impact beyond gravity, spin-offs

22

Impact beyond gravity, spin-offs

Thank you!

LEMING

www.lepp.ethz.ch

Anna Soter 07.06.2024

SNSF Starting Grant

