Gaseous detectors in light DM searches: The NEWS-G and MIGDAL experiments

Konstantinos Nikolopoulos University of Hamburg and University of Birmingham

Universität Hamburg Der Forschung | der Lehre | der Bildung

Standard Halo Model

- Isothermal sphere with isotropic Maxwell-Boltzmann velocity distribution
- No substructure

Locally

- ▶ DM density is p~0.3 GeV cm⁻³
- Solar system travelling through "DM Wind"
- Flux: 10⁷/m_X GeV cm⁻²s⁻¹

Standard Halo Model

- Isothermal sphere with isotropic Maxwell-Boltzmann velocity distribution
- No substructure

Locally

- ▷ DM density is p~0.3 GeV cm⁻³
- Solar system travelling through "DM Wind"
- Flux: 10⁷/m_X GeV cm⁻²s⁻¹
- K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

Also constraints on spin-dependent proton/neutron-DM interactions
K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

Also constraints on spin-dependent proton/neutron-DM interactions
K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

Also constraints on spin-dependent proton/neutron-DM interactions
K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

NEWS-G

Light Dark Matter searches with Spherical Proportional Counters

New Experiment With Spheres - Gas

13th collaboration meeting, May 2023

MEWS-G Collaboration

- ▶ 5 countries
- 10 institutes
- ▶ ~40 collaborators
- Three underground laboratories 6 SNOLAB
 - Laboratoire Souterrain de Modane
 - Boulby Underground Laboratory

UΗ

CMR

UNIVERSITY^{OF} BIRMINGHAM

Direct Detection: Signal

Recoiling nucleus can deposit energy in several forms
 Sensitivity to multiple signals for background suppression

K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

BIRMINGHAM

Direct Detection: Signal

Recoiling nucleus can deposit energy in several forms
 Sensitivity to multiple signals for background suppression

K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

DRIFT

UNIVERSITYOF BIRMINGHAM DER FORSCHUNG | DER HENDUNG

Direct Detection: Light Dark Matter

Favourable recoil energy distribution for lighter targets Fraction of energy dissipated as ionisation higher for lighter elements Larger part of recoil nucleus energy "visible" to detector

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

sl

9

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

9

K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

40 s

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

9

Universität Hamburg

K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

40 s

Single anode: Drift and Amplification fields are connected

$$E = \frac{V_a}{r^2} \frac{r_a r_c}{r_c - r_a} \approx \frac{V_a r_a}{r^2}$$

Single anode: Drift and Amplification fields are connected

$$E = \frac{V_a}{r^2} \frac{r_a r_c}{r_c - r_a} \approx \frac{V_a r_a}{r^2}$$

JINST 15 (2020) 11, 11

Single anode: Drift and Amplification fields are connected

$$E = \frac{V_a}{r^2} \frac{r_a r_c}{r_c - r_a} \approx \frac{V_a r_a}{r^2}$$

3D printed ACHINOS with DLC coating

JINST 15 (2020) 11, 11

ACHINOS: Multi-anode sensor
 Multiple anodes placed at equal radii
 Sensors with 5, 11, 33 anodes operated
 Decoupling drift and amplification fields
 Individual anode read-out; TPC-like capabilities

Single anode: Drift and Amplification fields are connected

$$E = \frac{V_a}{r^2} \frac{r_a r_c}{r_c - r_a} \approx \frac{V_a r_a}{r^2}$$

3D printed ACHINOS with DLC coating

ACHINOS: Multi-anode sensor
 Multiple anodes placed at equal radii
 Sensors with 5, 11, 33 anodes operated
 Decoupling drift and amplification fields
 Individual anode read-out; TPC-like capabilities

K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

UNIVERSITY^{OF} BIRMINGHAM

NEWS-G at SNOLAB

3 cm archaeological lead

22 cm of Very Low Activity lead

Stainless steel skin

40 cm high density polyethylene

Ø140 cm 4N Copper (99.99% pure) Assembled at LSM

Results with LSM data

K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

HUniversität Hamburg 14

- Copper common material for rare event experiments
 - Strong enough to build gas vessels
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
 - Low cost/commercially available at high purity
- Backgrounds
 - ▷ Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
 - Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure) Spun into two hemispheres Electron-beam welded together

- Copper common material for rare event experiments
 - Strong enough to build gas vessels
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
 - Low cost/commercially available at high purity
- Backgrounds
 - Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
 - Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure) Spun into two hemispheres Electron-beam welded together

- Opper common material for rare event experiments
 - Strong enough to build gas vessels
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
 - Low cost/commercially available at high purity
- Backgrounds
 - Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
 - Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure) Spun into two hemispheres Electron-beam welded together

- Copper common material for rare event experiments
 - Strong enough to build gas vessels
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
 - Low cost/commercially available at high purity
- Backgrounds
 - Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
 - Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure) Spun into two hemispheres Electron-beam welded together

- Copper common material for rare event experiments
 - Strong enough to build gas vessels
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
 - Low cost/commercially available at high purity
- Backgrounds
 - Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
 - Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure) Spun into two hemispheres Electron-beam welded together

- Copper common material for rare event experiments
 - Strong enough to build gas vessels
 - No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
 - Low cost/commercially available at high purity
- Backgrounds
 - Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
 - Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure) Spun into two hemispheres Electron-beam welded together

Suppressing backgrounds

Suppressing backgrounds

UNIVERSITYOF BIRMINGHAM

Internal shield: add a layer of extremely radio-pure copper

Internal shield: add a layer of extremely radio-pure copper

Internal shield: add a layer of extremely radio-pure copper

Internal shield: add a layer of extremely radio-pure copper

36 µm/day → ~1 mm/month
 Possibility to directly grow the sphere
 No machining or welding
 ECuME: Ø30 cm prototype at PNNL
 Bath designed and assembled
 Tests on electrolyte quality successful
 R&D on EF CuCr alloys (PureAlloys project)

UNIVERSITY^{of} BIRMINGHAM

\mu Universität Hamburg 17

A Ø300cm intact underground electroformed spherical proportional counter with water-based shield

A Ø300cm intact underground electroformed spherical proportional counter with water-based shield

- A Ø300cm intact underground electroformed spherical proportional counter with water-based shield
- K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

UNIVERSITY^{OF} BIRMINGHAM

Huniversität Hamburg

Phys.Rev.D 108 (2023) 11, 112006

Phys.Rev.D 108 (2023) 11, 112006

Phys.Rev.D 108 (2023) 11, 112006

MIGDAL

Unambiguous Migdal effect observation and measurement

LUX: PRL 122 (2019) 13, 131301 Also Xenon1T: PRL 123 (2019) 24, 241803

LUX: PRL 122 (2019) 13, 131301 Also Xenon1T: PRL 123 (2019) 24, 241803

- Analysed theoretically by Arkady Migdal
 - ▶ Nuclear scattering (1939)
 - ▶ a and β^{\pm} decays (1941)
- Relevance for DM searches
 - Nucl. Phys. B727 (2005) 406, PLB 606 (2005) 313, IJMPA 22 (2007) 3155, JHEP03(2018)194, ...

LUX: PRL 122 (2019) 13, 131301 Also Xenon1T: PRL 123 (2019) 24, 241803

- Analysed theoretically by Arkady Migdal
 - ▶ Nuclear scattering (1939)
 - ▶ a and β^{\pm} decays (1941)
- Relevance for DM searches
 - Nucl. Phys. B727 (2005) 406, PLB 606 (2005) 313, IJMPA 22 (2007) 3155, JHEP03(2018)194, ...

LUX: PRL 122 (2019) 13, 131301 Also Xenon1T: PRL 123 (2019) 24, 241803

Analysed theoretically by Arkady Migdal

- Nuclear scattering (1939)
- ▶ a and β^{\pm} decays (1941)
- Relevance for DM searches
 - Nucl. Phys. B727 (2005) 406, PLB 606 (2005) 313, IJMPA 22 (2007) 3155, JHEP03(2018)194, ...

Substrate the served in α and β[±] decays
 Not observed (yet) in nuclear scattering
 Recent attempts inconclusive (PRD109 (2024) L051101, J.Bang UCLA DM'23)

MIGDAL Experiment

- Ø Aim: unambiguous Migdal effect observation and measurement in nuclear scattering
 - Observe both electron and ion recoil

Astropart.Phys. 151 (2023) 102853

12 institutes and ~40 participants

MIGDAL Experiment

Low Pressure Optical Time Projection Chamber

- Neutrons interacting in 50 Torr CF₄
- Extended particle tracks
- Avoid photon interactions
- Oetailed simulation (Degrad, SRIM/TRIM, Garfield++,

Magboltz, Gmsh/Elmer & ANSYS)

Double Glass-GEM Hole/pitch: 170/280 µm Gain: ~10⁵

NILE Facility at Rutherford Appleton Lab

ISIS facility: High-yield neutron generators
 Installed in "shielding bunker"
 D-D: 2.47 MeV (10⁹ n/s)
 D-T: 14.1 MeV (10¹⁰ n/s)
 Collimators: Defined beam through TPC
 e.g. D-D collimator 30 cm in length

K. Nikolopoulos / 07.06.2024 / Gaseous detectors for light Dark Matter

6

Simulated Migdal-like events with a 250 keV NR and a 5 keV ER

Simulated Migdal-like events with a 250 keV NR and a 5 keV ER

Detector Commissioning

Commissioning with radioactive sources
 ⁵⁵Fe calibrations throughout data-taking

27

💾 Universität Hamburg

Data collection

Detector stability vs time. Voltage adjusted by 2V/day

Two science runs completedData analysis on-going

Example event with 100 keVee NR

MIGDAL-like topology: High energy NR candidate with ER candidate

MIGDAL-like topology: High energy NR candidate with ER candidate

MIGDAL-like topology: High energy NR candidate with ER candidate

MIGDAL-like topology: High energy NR candidate with ER candidate

Particle identification

33

🚆 Universität Hamburg
Tests with noble gas mixtures

As the next step, investigations of the Migdal effect in noble gases will be pursued

- Preliminary results from detector tests with ⁵⁵Fe in Argon + CF₄ mixtures
 - Enhancement in light yield with Argon
- Operation with exposure to AmBe neutrons

Garfield++ on GPUs

Garfield++ is industry standard for gaseous detector simulation

- Modern detectors require "microscopic electron tracking" to reproduce observations
- We have now developed a GPU version of the main algorithms of Garfield++
 - Incorporated in the Garfield++ codebase.
- Change between CPU and GPU with a single switch!
 - Available in the Garfield++ repository.

Summary

- Ø Particle nature of Dark Matter remains unknown!
 - Sub-GeV mass range is uncharted territory
- Novel methods for light DM searches are pursued
- NEWS-G probes this key mass range
 - Data-taking in SNOLab on-going
 - New detectors planned for the coming years
 - Many physics opportunities
- MIGDAL is aiming to demonstrate/measure the Migdal effect
 - Two science-runs completed
 - Analysis of collected data on-going
- Security Security Exciting physics programme ahead!

Electroplating setup at LSM

Additional Slides

