

EXPLORING POTENTIAL: ALPS II'S TES DETECTION SYSTEM FOR DIRECT DARK MATTER INVESTIGATIONS

Christina Schwemmbauer¹,

Katharina-Sophie Isleif^{1, now at 2}, Friederike Januschek¹, Axel Lindner¹, Manuel Meyer³, Gulden Othman⁴, Elmeri Rivasto³, José Alejandro Rubiera Gimeno¹

¹Deutsches Elektronen Synchrotron DESY, Hamburg, Germany
²Helmut-Schmidt Universität, Hamburg, Germany
³Southern Denmark University, Odense, Denmark
⁴Institut für Experimentalphysik, Universität Hamburg, Germany

EDSU-Tools 2024

University of Southern Denmark

HELMHOLTZ

Direct Detection of sub-GeV DM?

 \rightarrow experiments lose sensitivity

Direct Detection of sub-GeV DM?

Sketch adapted from Benjamin V. Lehmann

Superconducting Detectors

$E_{\mathrm{T}_{\mathrm{max}}} = E_{\mathrm{kin}} \sim m_{\chi} v^2 \sim 10^{-6} m_{\chi}$

DM mass

Energy transferred in scattering process

Transition Edge Sensors (TES)

Incident photon on superconducting material leads to temperature increase

67 E=h·P Leading to a large increase in resistance on transition curve ۵R R ΔI normal conducting V bias, Super-Conducting lllb thermal ΔB link 100 mK Vout ~ 140 mK Tc SQUID readout cold bath

SQUID = Superconducting Quantum Interference Device

Single-photon pulse integral **proportional** to photon energy (1064 nm \doteq 1.165 eV)

Area = 25 µm x 25 µm Thickness = 20 nm

TES at ALPS II

250m long experiment in "old" HERA accelerator tunnel

Exploring Potential: ALPS II'S TES Detection System for Direct Dark Matter Investigations | Christina Schwemmbauer | EDSU Tools | 07/06/2024

Light Shining through a Wall experiment

Challenge: Detect single photon from axion-photon conversion Currently: HETerodyne Sensing Future Option: TES

See backup slides for details on ALPS II

ALPS II TES Requirements

Optimized setup, detector and analysis for 1064 nm (1.165 eV) photons

Extremely low background needed to detect ~ 1 photon/day

Currently 6.9x10⁻⁶ cps [1] intrinsic background

¹ R. Shah et al., PoS, EPS-HEP2021, 801 (2022)

² J.A. Rubiera Gimeno et al., PoS EPS-HEP2023, 567 (2024)

Exploring Potential: ALPS II'S TES Detection System for Direct Dark Matter Investigations | Christina Schwemmbauer | EDSU Tools | 07/06/2024

>90% measured in the lab! [2]

About TES Requirements

¹ R. Shah et al., PoS, EPS-HEP2021, 801 (2022)

² J.A. Rubiera Gimeno et al., PoS EPS-HEP2023, 567 (2024)

Exploring Potential: ALPS II'S TES Detection System for Direct Dark Matter Investigations | Christina Schwemmbauer | EDSU Tools | 07/06/2024

Verv - Good energy resolution over broad energy	
spo >00 1.165 eV [2] ~5% @ 1.165 v	

TES for DDM

Projections and plot by Benjamin V. Lehmann

³Hochberg, Y. et al. <u>arXiv:2110.01586</u> (2021)

DESY.

Exploring Potential: ALPS II'S TES Detection System for Direct Dark Matter Investigations | Christina Schwemmbauer | EDSU Tools | 07/06/2024

Challenges:

- low mass (0.2 ng)
- small area (25 x 25 µm)
- limited knowledge about
 - broadband response

Fitting procedure

$$U(t) = -\frac{2A}{e^{-\frac{1}{\tau_{\text{rise}}}(t-t_0)} + e^{\frac{1}{\tau_{\text{decay}}}(t-t_0)}} + V_0$$

- 1064 nm calibration laser
- pulse shape fitted to all triggered pulses
- apply cuts on parameters like rise and decay time, pulse height or amplitude
- \rightarrow apply for multiple
- wavelengths/energies?

Rise Time [µs]

cutting away signals outside of central region

11

Energy Calibration

Expectations:

- linear relationship between pulse integral/amplitude and energy
- approximately constant behavior of rise and decay time (mainly governed by TES circuit)

more challenging at lower energies (noise, etc.) \rightarrow previous simulations (DOI:10.22323/1.454.0055) showed promising results for a sub-MeV DM search based on these assumptions

nic photon detection

erimen

system for the

N. Bastidon,

Simulated pulses of different wavelengths with fits (by Jose A. Rubiera Gimeno)

Calibration Setup

Experimental Setup including laser diodes

Calibration Setup

To mimic an intrinsic measurement, the fibers are placed on top of the 20 mK stage above the TES module to reduce black body radiation from the warmer parts of the cryostat. The light can enter the TES space through a small slit.

slit

Exploring Potential: ALPS II'S TES Detection System for Direct Dark Matter Investigations | Christina Schwemmbauer | EDSU Tools | 07/06/2024

DESY.

Calibration Results

Energy spectrum of used laser diodes

0.8

Calibration curve for pulse amplitude

Calibration Results

Amplitude and pulse integral show linearity for the same setup and cooldown

Calibration Results

Important to eliminate backgrounds for low

Energy Resolution

TES1 - pulse_integral TES1 Energy Resolution based on pulse_integral 0.12880 nm 13 $ER = -\frac{\sigma}{2}$ 1064 nm 0.10 μ 1310 nm 12energy resolution [%]1640 nm 0.08۲ 11 n. 0.06 100.04 0.029 0.00 8 30 2060 40 50700.9 pulse integral [μ s mV] 0.81.21.01.1 1.31.4

Exploring Potential: ALPS II'S TES Detection System for Direct Dark Matter Investigations | Christina Schwemmbauer | EDSU Tools | 07/06/2024

DESY.

Energy resolution improves for higher energies (expected due to higher noise contribution)

Summary

- Our TES can search for sub-MeV DM prior to being employed in the ALPS II experiment exploiting DM-electron scattering possibly reaching new sensitivities
- This could be a proof of principle for similar technologies being used as DM detectors
- 20 day dedicated DDM run performed in April/May, analysis ongoing
- calibration results suggest linear relationship between pulse amplitude/integral and energy of the incoming particle
- rise and decay time stay constant over a large range of energies \rightarrow calibration enables a better understanding and supports the analysis of dedicated direct DM

searches

Outlook

- Analysis of dedicated DM run ongoing supported by calibration results and...
- Further investigation of intrinsic background (paper soon: Simulating the response of a transition edge sensor to cosmic-ray and radioactivity induced backgrounds by J.A. Rubiera Gimeno et al.)
- Expecting to receive 1550 nm TES from NIST without zirconia fiber sleeves that could reduce intrinsic backgrounds (see paper!)
- further investigate behavior < 0.8 eV and repeat measurements with additional sensors (e.g. with different SQUID chips)

FOR

THANK YOU

Animation by SciComLab

More ALPS II

Video material on **YOUTUBE**:

Drone flight through the ALPS II experiment at DESY 1627 Aufrufe • vor 2 Monaten

In May 2023, the "light through the wall" experiment ALPS II at DESY will start taking data. Its objective: the detection of dark matter . 4K Untertitel

The ALPS II experiment at DESY

Das Rätsel um die Dunkle Mater

eds to detect the light ..

esteht schon seit.

Podcasts (Spotify Links, but also available on other platforms)

INTERACTIONS.ORG PARTICLE **MYSTERIES**

LICHT DURCH DIE WAND

Measured pulses

Average pulses of different wavelengths (calibration measurement)

U [mV]

More noisy at lower trigger thresholds

DDM backgrounds - preliminary

Effects due to fiber curling

Transmission spectrum of a white light source for different windings of curled fiber - measured by intern Maria T. Pabst

Curled optical fiber on upper part of the cryostat.

Energy resolution

Intrinsic TES Backgrounds

Example pulses for intrinsic background

pulse-height distribution of intrinsic background pulses

Studies by Jose A. Ruberia Gimeno

1064 nm signal area

Studies by Jose A. Ruberia Gimeno

Intrinsic TES Backgrounds

Studies by Jose A. Ruberia Gimeno

Extrinsic TES Backgrounds

Simulation of black body background contribution considering fiber curling and other components influencing transmission

Studies by Jose A. Ruberia Gimeno

Hochberg, Y. et al., *Physical Review Letters*, *123*(15). (2019)

TES Details

- Very small active area energy deposition in tungsten layer
- Optical stack & efficiency optimized for 1064nm (1.165 eV) photons
- Wider range of energies interesting for direct DM searches

SQUID chips DSU Tools | 07/06/2024

DDM viability simulations

test background rate for lower triggers after analysis:

- ~ 70 min noise-only simulation
- Applying cuts optimized for 1.165eV and **0.583eV**

Noise-only simulations

	Trigger Rate for -12 mV threshold
	0.422 (0.010) Hz
	after analysis & cuts
Cuts based on	Trigger Rate for -12 mV threshold
1.165 eV	< 0.0007 Hz
0.583 eV	< 0.0007 Hz

No noise passing analysis & cuts with ~56% acceptance of 0.583eV pulses Promising for sub-MeV direct DM searches!

ALPS II - Any Light Particle Search

- SM-coupling to two photons
- Detection via Primakoff-like Sikivie effect
- Possible ALP production by photon-ALP oscillation in the presence of strong magnetic fields

Light Shining Through Walls (LSW) experiments

K. Ehret et.al., NIMA 612(1)83-960 (2009)

ALPS II - Setup

Detection probability:

$$P_{\gamma \to a \to \gamma} \propto PC \cdot RC \cdot g_{a\gamma\gamma}^4 B^4 L^4$$

Expected rate of low energy ($\sim 1.16 \,\mathrm{eV}$) photons: (for $g_{a\gamma\gamma} = 2 \cdot 10^{-11} \,\mathrm{GeV}^{-1}$) $\dot{N}_{\gamma} \approx 2.8 \cdot 10^{-5} \frac{\gamma}{\mathrm{s}} \approx 1 \frac{\gamma}{\mathrm{dav}}$

Single-photon detection requirements for ALPS II:

- Low energy photon detection
- Low background (< 1 photon/day)
- High detection efficiency

ALPS II - World leading precision interferometry

- Longest storage time Fabry Perot cavity ever!
- Length: 124.6m, FSR: 1.22 MHz
- Storage time: 7.04 ms

Slides adapted from Isabella Oceano

DESY.

ALPS II - Heterodyne detection - first Results (Production Cavity only)

DESY.