Recent Dark Sector results from Belle and Belle II

Sourav Dey

KEK, Japan (on behalf of the Belle and Belle II Collaboration)

Exploring the Dark Side of the Universe Tools 2024 - 5th World Summit Île de Noirmoutier, France, 7 June, 2024

-ke	۱
	J

Dark Sector

- DM existence established in astrophysics, e.g. rotation curves of spiral galaxies, bullet clusters, ...
- No dark matter candidate in the Standard Model (SM)
 - One of the most convincing indications of new physics
- Sub-GeV Light Mediator portals:
 - Vector portal Dark Photons, Z^\prime bosons
 - Pseudo-scalar portal Axion Like Particles (ALPs)
 - Scalar portal Dark Higgs / Scalars
 - Neutrino portal Sterile neutrinos

Dark Sector Candidates, Anomalies, and Search Techniques

Sourav Dey, KEK

Dark Sector searches in Belle and Belle II

Vector portal Dark Photons, Z' bosons

- $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \text{invisible}$ (Invisible: neutrino, dark matter)(Belle II : PRL 130.231801)
- $e^+e^- \to \mu^+\mu^-\tau^+\tau^-$ (Belle II : arXiv 2306.12294)
- $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ (Belle II : arXiv 2403.02841)

Scalar portal Dark Higgs / Scalars

- $e^+e^- \rightarrow \tau^+\tau^-l^+l^-$ (Belle : PRD 109.032002)
- $e^+e^- \rightarrow \mu^+\mu^-$ + invisible h'(Belle II : PRL) 130.071804)

Pseudo-scalar portal Axion Like Particles (ALPs)

- $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$ (Belle II : PRL 125.161806)
- $\tau \rightarrow l\alpha, \alpha$ invisible(Belle II : PRL 130.181803)

Neutrino portal Sterile neutrinos

• $\tau \to \pi N (\to \mu^+ \mu^- \nu_{\tau})$ (Belle : arXiv 2402.02580)

Analyses covered in this talk

Search for lepton-flavor-violating $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ decays at Belle II (To be submitted to JHEP) arXiv <u>2405.07386</u>

Search for a $\mu^+\mu^-$ resonance in four-muon final states at Belle II (Submitted to PRD) arXiv <u>2403.02841</u>

Search for a heavy neutral lepton that mixes predominantly with the tau neutrino (Submitted to PRD(L)) arXiv <u>2402.02580</u>

The KEKB and the Belle Detector

EDSU Tools 2024 - 5th World Summit, Noirmoutier

8 GeV e⁻, 3.5 GeV e⁺ Aerogel Cherenkov cnt. SC solenoid n=1.015~1.030 1.5T $eV e^+$ ECL CsI(Tl) $16X_0$ **TOF** counter 8 GeV (**Central Drift Chamber** small cell +He/C₂H₆ Si vtx. det. μ / K_L detection 14/15 lyr. RPC+Fe 3/4 lyr. DSSD

- $\sqrt{s} = 10.58$ GeV : mass of $\Upsilon(4S)$
- asymmetric collider
- Prospect for studying a vast region of particle physics (Precision studies of B, charm, and tau physics, QCD and exotic hadrons, searches for BSM particles etc.)

Luminosity

- Belle data taking period: $1999-2010: 1040 \text{ fb}^{-1}$
- $\sigma(e^+e^- \rightarrow b\bar{b}) = 1.05 \ nb$
- $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \ nb$
- $\Upsilon(nS)\epsilon[n = 1,...,5]$, use of off resonance data : B factories are also τ factories

The SuperKEKB and the Belle II Detector

the Belle II Detector

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

EDSU Tools 2024 - 5th World Summit, Noirmoutier

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Luminosity

$\tau \rightarrow \mu^{-}\mu^{+}\mu^{-}$: Motivation

• Lepton Flavor Violation (LFV) is allowed in various extensions of the Standard Model (SM) but it has never been observed

- Predicted LVF rates 10^{-50} , with neutrino mixing, well below the sensitivities of any experiment.
- the SM.
- Previous searches: <u>Belle, CLEO, BaBar, LHCb, ATLAS</u> and <u>CMS</u>

EDSU Tools 2024 - 5th World Summit, Noirmoutier

• The observation of LFV decays would, therefore, provide indisputable evidence of physics beyond

Not a dark sector analysis

$\tau \rightarrow \mu^{-}\mu^{+}\mu^{-}$: Analysis Method

- We cannot fully reconstruct $\boldsymbol{\tau}$ in the SM due to neutrinos
- We use thrust axis \vec{n}_{th} .
 - \vec{n}_{th} is defined such that V_{th} is maximized

$$V_{th} = \frac{\Sigma_i |\vec{p}_i^{CM} \cdot \vec{n}_{th}|}{\Sigma_i |\vec{p}_i^{CM}|}$$

REST

OF

EVENT

- Event is divided into two hemispheres
- Inclusive (or untagged) reconstruction : signal τ is reconstructed into three muons, all the other tracks and clusters are used to form a Rest-of-Event (ROE)
 - Selection and background rejection based on BDT

EDSU Tools 2024 - 5th World Summit, Noirmoutier

 $\tau \rightarrow \mu \ \mu' \mu$

• We observe one event in the signal region

EDSU Tools 2024 - 5th World Summit, Noirmoutier

- Tight signal region: large background reduction using $\Delta E_{3\mu}\equiv E_{\tau sig}-E_{beam}$ and $M_{3\mu}$

• Backgrounds arise from:

- radiative dilepton and four-lepton final states (low-multiplicity backgrounds) with potential electrons misidentified as muons,
- incorrectly reconstructed SM $e^+e^- \to \tau^+\tau^-$ events
- continuum hadronization processes from $e^+e^- \rightarrow q\bar{q}$ events, where pions are misidentified as muons.

Background events suppressed with selection cuts and boosted decision tree classifier
Dominant systematics from lepton ID efficiency : Negligible impact on the limit

 $\tau \rightarrow \mu^{-}\mu^{+}\mu^{-}$: Result

Previous Belle result : 2.1×10^{-8} @90% CL with $782 fb^{-1}$

Belle II result(observed limit) : 1.9×10^{-8} @90% CL

- We compute a 90% confidence level (CL) upper limit on the branching fraction
- 2.5 times the efficiency than in the latest Belle analysis
- Most stringent bound to date

EDSU Tools 2024 - 5th World Summit, Noirmoutier

DATA used: 424 fb^{-1} , 389 M $e^+e^- \rightarrow \tau^+\tau^-$ events

Sourav Dey, KEK

$\mu^+\mu^-$ resonance in four-muon final state

• Search for the process $e^+e^- \rightarrow \mu^+\mu^- X$, with

$$X \to \mu^+ \mu^- (X = Z', S)$$

- We look for a peak in the opposite charge di-muon mass distribution in e +e \rightarrow µ +µ µ +µ events
- $(L_{\mu} L_{\tau})$ model : used as benchmark
- muonphilic dark scalar (S) model : performance checked
- Events selected have
 - 4 charged particles
 - At least three identified as muons
 - M(4-track) ~ $\sqrt{s/c^2}$
 - No extra energy

EDSU Tools 2024 - 5th World Summit, Noirmoutier

Sourav Dey, KEK

I

D

• Dominant background: SM $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$

signal events (presence of a resonance in both candidate and recoil muon pairs)

- No significant excess observed in 178 fb^{-1}

EDSU Tools 2024 - 5th World Summit, Noirmoutier

• 90% CL upper limits on the process cross-section $\sigma(e^+e^- \to X\mu^+\mu^-) \times \mathscr{B}(X \to \mu^+\mu^-)$, with $X = S, Z'^{15}$

- Cross section limits are translated into upper limits on the g^\prime coupling constant for the
- $L_{\mu}-L_{ au}$ model and on the g_S coupling constant for the muonphilic dark scalar S
- previous searches with much larger luminosity : still upper limits are competitive
- First g_S upper limit obtained from a dedicated search
- These limits exclude the L_{μ} $L_{ au}$ model and the muonphilic scalar model as explanations

of the $(g-2)_{\mu}$ anomaly for 0.8 < $m_{Z'}$ < 4.9 GeV/c2 and 2.9 < m_S < 3.5 GeV/c2, respectively

Heavy Neutral Lepton (N)

- Neutrino Oscillations: Neutrinos must have mass ullet
- Neutrino masses can be incorporated to SM by introducing ulletRH (Majorana) neutrinos
- Allows to solve some of the outstanding problems of the SM
 - Origin of the SM neutrino masses
 - Non-baryonic dark matter Phys. Lett. B 631, 151-156 (2005)
 - Baryogenesis
- N are sterile: Interacts with ν_{SM} through mixing: $N\leftrightarrow \nu_{SM}$
- Long lifetime of N: due to small m_N and small mixing
- Heavy Neutral Lepton also appears in SUSY, exotic Higgs, GUT...

EDSU Tools 2024 - 5th World Summit, Noirmoutier

T. Asaka, S. Blanchet, M. Shaposhnikov,

neutri neutrin 105.7 MeV 1.777 GeV 0.511 MeV Leptons Ð μ electron muon tau

Heavy Neutral Lepton: Direct searches $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e , ν_μ , ν_τ with N

- Previous experiments explored $m_{\!N}$ from 100 MeV to ~ 1TeV
 - $m_N > m_Z$ Direct searches @LHC: $pp \rightarrow Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ CMS($W^{\pm} \rightarrow N l^{\pm}$)
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62

Heavy Neutral Lepton: Direct searches $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e , ν_μ , ν_τ with N

- Previous experiments explored m_N from 100 MeV to ~ 1TeV
 - $m_N > m_Z$ Direct searches @LHC: $pp \rightarrow Nl^{\pm}$
 - $m_N < m_{Z,W}$ Delphi($Z^0 \rightarrow \nu N$), Atlas/ CMS($W^{\pm} \rightarrow N l^{\pm}$)
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62
- All the experiments provide tight limits on $\|V_{eN}\|^2$, $\|V_{\mu N}\|^2$

Heavy Neutral Lepton: Direct searches $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e , ν_u , ν_τ with N

- Previous experiments explored $m_{\!N}$ from 100 MeV to \sim 1TeV
 - $m_N > m_Z$ Direct searches @LHC: $pp \rightarrow Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ CMS($W^{\pm} \rightarrow N l^{\pm}$)
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62
- All the experiments provide tight limits on $\|V_{eN}\|^2$, $\|V_{\mu N}\|^2$
- Limits on $\|V_{\tau N}\|^2$ are much weaker
- This motivates us to overcome the experimental challenges and explore $\left\| V_{\tau N} \right\|^2$

Analysis Method

- N decays via the weak neutral current
- This analysis probes $|V_{N\tau}|^2$ directly
- This production mechanism implies $m_N < m_\tau m_\pi$
- N is long-lived for a range of $\|V_{N\tau}\|^2$ values that we are sensitive to

Full Belle data sample used (836 \pm 12) \times 10⁶ τ pairs

Analysis Method

- $e^+e^- \rightarrow \tau^+_{tag}\tau^-_{sig}$
 - Tag side:

• Tag side:

$$\tau^+_{tag} \rightarrow \qquad \pi^+ \bar{\nu}_{\tau}$$
 $\pi^+ \pi^0 \bar{\nu}_{\tau}$
• Signal side: $l^+ \nu_l \bar{\nu}_{\tau}$

$$\tau_{sig}^- \rightarrow \pi^- N(\rightarrow \mu^+ \mu^- \nu_{\tau})$$

- We look for a $\mu^+\mu^-$ displaced • vertex (DV)
- Radial position of DV > 15 cm ulletfrom the beam axis

DV = Displaced Vertex

IP = Interaction Point

 K_S^0 rejection and definition of two signal regions

- $K^0 \rightarrow \pi^+ \pi^-$: displaced vertex similar to N: removed the mass region
- We divide the signal region into Low mass and High mass signal region:
 - SRH: $m_{\pi\pi}^{DV}$ > 0.52 GeV/c^2
 - SRL: $m_{\pi\pi}^{DV} < 0.42 \ GeV/c^2$
- LightN distribution is different from heavy N distribution

more on Analysis Method

- $N_{signal} = N_{\tau\tau} \times B(\tau \to \pi N) \times B(N \to \mu^+ \mu^- \nu_{\tau}) \times \epsilon$, where ϵ is the efficiency

EDSU Tools 2024 - 5th World Summit, Noirmoutier

Signal efficiencies in SRH and SRL as a function of $|V_{N\tau}|^2$ and m_N : efficiency map

 10^{-2} Ξ Ξ

more on Analysis Method

- Full kinematics of the signal-decay chain \bullet reconstructed with a two-fold ambiguity (m_+) and $m_{})$
- In the signal regions targeting heavy and light ulletNs we observe 1 and 0 events, respectively,
 - in agreement with the background expectation.

distribution of signal-MC events with $m_N = 600$ MeV/c^2 in the SRL

EDSU Tools 2024 - 5th World Summit, Noirmoutier

only one signal candidate observed

Result

- Uncertainties
 - N branching fraction \bullet
 - decay modeling \bullet
- luminosity
- cross section uncertainty on the reconstruction of the two \bullet prompt tracks
- the background yield expectations(largest) ullet
- Handled with the nuisance parameters using CL_{s} \bullet prescription
- Allows for direct measurement of the N mass if a signal is observed

Summary

- No significant excess observed in any analysis
- Most stringent bound to date on branching fraction with $\tau \to \mu^- \mu^+ \mu^-$ analysis
- In $\mu^+\mu^-$ resonance analysis, first g_S upper limit obtained from a dedicated search • HNL: Most stringent limits in 1.3 - 1.4 GeV/c^2
- - For the first time, utilizes the displaced vertex originating from the long-lived Heavy Neutral Lepton decay
 - Ability to reconstruct the Heavy Neutral Lepton candidate mass to suppress the background to the single-event level
- We have moved from Belle to Belle II era. With an improved detector, and more data, more exiting results to come in the future

THANK YOU FOR YOUR ATTENTION

EDSU Tools 2024 - 5th World Summit, Noirmoutier

Backup

From the Belle to the Belle II Detector

$\tau \rightarrow \mu^{-}\mu^{+}\mu^{-}$: Analysis

- DATA used: 424 fb^{-1} , collected between 2019 and 2022, 389 M $e^+e^- \rightarrow \tau^+\tau^-$ events
- Backgrounds arise from:
 - radiative dilepton and four-lepton final states (low-multiplicity backgrounds) with potential electrons misidentified as muons,
 - incorrectly reconstructed SM $e^+e^- \rightarrow \tau^+\tau^$ events
 - continuum hadronization processes from $e^+e^- \rightarrow q\bar{q}$ events, where pions are misidentified as muons.
- Background events suppressed with selection cuts and boosted decision tree classifier

$\tau \rightarrow \mu^{-}\mu^{+}\mu^{-}$: Systematics

Quantity	Source	Uncertainty(%)	
		Low	High
$\epsilon_{3\mu}$	PID	2.1	2.4
	Tracking	1.0	1.0
	Trigger	0.9	0.9
	BDT	1.5	1.5
	Signal Region	3.9	2.9
N _{exp}	Momentum Scale	16	16
Luminosity		0.6	0.6
$\sigma_{ au au}$		0.3	0.3

$\tau \rightarrow \mu^{-}\mu^{+}\mu^{-}$: Result

 $\mathscr{B}(\tau^- \to \mu^- \mu^+ \mu^-) = \frac{N_{obs} - N_{exp}}{\mathscr{L} \times 2\sigma_{\tau\tau} \times \epsilon_{3\mu}} = (2.1^{+5.1}_{-2.4} \pm 0.4) \times 10^{-9}$

We observe one event in the signal region

