The quest for CEvNS* at nuclear reactors : still some road ahead...

Course advantage of the state o

*Coherent Elastic Neutrino-Nucleus Scattering

2 ULCH

EDSU-Tools Noirmoutier, 06/07/2024

Matthieu Vivier CEA Paris-Saclay

The CEvNS process In a nutshell

D. Z. Freedman (1974)

- Neutral current, flavor blind process
- Coherent interaction over a nucleus as a whole
 - ➡ N²-enhancement of the cross-section
 - Tiny nuclear recoils
 - ➡ No threshold

Adapted from Cadeddu, et al. (2023)

 $\lambda_{Z^0} \ll 2R$

 $\lambda_{Z^0} \gtrsim 2R \Leftrightarrow |\vec{q}| \lesssim \mathcal{O}(50 \,\mathrm{MeV})$

D. Z. Freedman (1974)

The CEvNS process In a nutshell

- Neutral current, flavor blind process
- Coherent interaction over a nucleus as a whole
 - ➡ N²-enhancement of the cross-section
 - Tiny nuclear recoils
 - ➡ No threshold

Adapted from Cadeddu, et al. (2023)

EDSU-Tools 2024

Detection of CEvNS Man-made neutrino sources Loss of coherence $F(q^2) \ll 1$

 u_{μ}

SNS

• Electron capture & beta-decay sources

Adapted fron

- Power & research reactors
- Decay-at-rest sources

SNS:	
	$\overline{\mathbf{v}}_{\mu}$
	v_{μ}
	Ve
Reactors:	ILL reactor
	(55 MW)
	HFIR reactor
	(85 MW)
	Chooz reactor
	(1.5 GW)
EC Sources:	
	³⁷ Ar (5 MCi)

50

 $ar{
u}_{\mu}$

Status of the COHERENT program Pion DAR source @ SNS (> 2016, Oakridge)

N²-dependence of (flux weighted) cross-section predicted by the SM

cea irfu

Status of the COHERENT program Pion DAR source @ SNS (> 2016, Oakridge)

N²-dependence of (flux weighted) cross-section predicted by the SM

lirfu

Cea

- First light in 2017 with 14.6-kg Csl[Na] detector
 - Stat. limited
 - Dominant syst.: backgrounds + QF
- Improvements since (2022): 2 x stat. + better measurement of QF \rightarrow Signal @ ~12 σ
- Detector decommissioned

Status of the COHERENT program Pion DAR source @ SNS (> 2016, Oakridge)

lirfu

Cea

- Second light in 2021 with 24-kg LAr detector
- > 3σ significance (~1.5 yr of data)
- More data to come, with 5σ in hand
- Upgrade to 750-kg payload

Future of COHERENT Toward high precision measurements

lirfu

Cea

Cryogenic Csl (undoped) detector

- 10 kg
- Threshold $\rightarrow \sim 100 \text{ eV}_{ee}$
- 10x stat. wrt Csl[Na]
- Design phase

d	:e	rı	e	nf	ir)	1¢	ł	t	t,	e1	s	a	t٤	da		,1	-	(
n	. i	n	W	0	h	s	Э	re	a	7	ly	e	ıt	:9	pai	ej	s)1	(
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-1 -	•	•	•	•	į
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	÷	•	•	•	•	
	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
				•																

Running since 2023 **Claim detection soon?**

n the target. The thin black	
bonding to $\pm 3\%$ uncertainty	
measurements on argon and	
:	
on BSM neutrino physics.	
d in Sec. 5.2. Examples of	
efs. (40, 106, 107, 108, 109,	
use to set constraints 90)
observation of an excess of	

Other activities: \downarrow syst.

- Inelastic interactions + background measurements
- Flux measurements with D₂O Cherenkov detectors

Long-term plans:

- Upgrade of SNS beam
- Second target station construction with dedicated neutrino hall \rightarrow ton-scale detectors

Detection of CEvNS Why the detection at reactors is more challenging?

	DAR
Neutrino flavors	Multiple
Flux at O(10 m) [cm ⁻² s ⁻¹]	~ 107-108
Cross-section [10 ⁻⁴⁰ cm ²]	10-100
Mean energy [MeV] Coherence	~ 30 F(q²) < 1
Recoil energies [keV]	$\lesssim 100 \text{ keV}$
Signal timing	Pulsed

Detection of CEvNS Why the detection at reactors is more challenging?

	DAR
Neutrino flavors	Multiple
Flux at O(10 m) [cm ⁻² s ⁻¹]	~ 107-108
Cross-section [10 ⁻⁴⁰ cm ²]	10-100
Mean energy [MeV] Coherence	~ 30 F(q²) < 1
Recoil energies [keV]	$\lesssim 100 \text{ keV}$
Signal timing	Pulsed

Heat

Detection of CEvNS

	DAR
Neutrino flavors	Multiple
Flux at O(10 m) [cm ⁻² s ⁻¹]	~ 10 ⁷ -10 ⁸
Cross-section [10 ⁻⁴⁰ cm ²]	10-100
Mean energy [MeV] Coherence	~ 30 F(q²) < 1
Recoil energies [keV]	$\lesssim 100 \text{ keV}$
Timing	Pulsed

0

time from POT onset (ns)

EDSU-Tools 2024

EDSU-Tools 2024

HPGe ionization detectors CONUS at Brokdorf (2018-2022, Germany)

Key features

- Intense neutrino flux: $\phi = 2.3 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$
- Overburden: 15-45 mwe
- Ultra low threshold: $\sim 200 \text{ eV}_{ee}$
- Ultra low background in Rol: O(10) dru

5 years of successful operation of 4 x 1-kg Ge detectors @ 17 m distance from a 3.9 GW_{th} reactor core

Achievements

- Full background decomposition and understanding \rightarrow reactor-correlated neutrons negligible
- Precise ionization quenching measurements down to 0.4 keV_{nr}
 - Validity of Lindhard theory confirmed !
 - Quenching factor $k = 0.162 \pm 0.04$ (stat. + syst.)

CONUS at Brokdorf (2018-2022, Germany)

Final results (2023)

HPGe ionization detectors CONUS+ \rightarrow Leibstadt (> 2023, Switzerland)

Upgrade of 4 x 1-kg Ge detectors @ 21 m distance from a 3.6 GW_{th} reactor core

Key features

- Intense neutrino flux: $\phi = 1.5 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$
- Overburden: 7-8 mwe
- Ultra low threshold: $< 200 \text{ eV}_{ee}$
 - Full bck characterization of detector location
 - \rightarrow higher reactor-correlated neutron flux !
 - Shielding adapted to new back conditions (2nd µ veto, etc.)
 - HPGe setup upgraded: energy resolution and threshold improved.

Status

- Installation over summer 2023
- Data taking started in November 2023
- Reactor OFF data this spring
- First results coming soon !

HPGe ionization detectors The DRESDEN-II detection claim (2022)

Key features

- Neutrino flux: $\phi = 4.8 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$
- 3-kg PPC detector @ 10.4 m from core
- Ultra low threshold: ~200 eV_{ee}
- Ultra compact shielding !

Claimed strong preference for the presence of CEvNS (p < 1.2 10⁻³)

<image>

Background subtracted residual

Clarifications necessary !

- Mitigation of reactor-correlated neutrons
- Model-dependent background subtraction
- Quenching factors (~ 2 x Lindhard) incompatible with CONUS and vGEN

Key features

- Neutrino flux: $\phi \simeq 10^{13}$ cm⁻² s⁻¹
- Gram-scale Skipper CCDs with sub-e⁻ readout noise
- Ultra low threshold: ~40 eVee
- No muon veto possible...

CONNIE Skipper CCD run at Angra-2 (2023)

M. Vivier

vIOLETA Skipper CCD at Atucha-2 (2023)

Reactor ON: 57 g.d Reactor OFF: 95.5 g.d DATA SET A - ON DATA SET A - OF Energy [keV] ┋╴┽┰┸┽┚╅┚┚╬╶╶╿┥╽┰╷┊┧╹╶╷╵╶┥┽┽┥┋┽╎┽┰╶╿╶╿┥╽┼╬╶┰┰┽┤╴┑┨┰╶╶┚╝┚╶┟┽╶┽╽╢╽┽╽┋╽┽╿┽

Bolometric detection RICOCHET at ILL (> 2024, France)

Key features

- Neutrino flux: $\phi = 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$
- 0.75-1 kg Ge dual readout (heat/ion.) + superconducting Zn
- Ultra low threshold: ~100 eV_{ee} (ion.) + ~100 eV (heat)

Ricochet at ILL

Thermal decoupling: TiMetal

Status

- Ge CryoCube development well-advanced → almost on specs !
- Shieldings and cryostat installed @ ILL
- Commissioning run with a light detector version (120 g) on-going → first results on reactor data probably soon !

on g) on !

Bolometric detection NUCLEUS at Chooz (> 2025, France)

Key features

- Neutrino flux: $\phi = 1.7 \times 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$
- 10-g CaWO₄ + Al₂O₃ with TES readout (heat only)
- Ultra low threshold: O(10 eV)
- Insensitive to quenching

Commissioning at Munich

Status

- External shieldings fully operational
- Commissioning of a light detector version on-going at TUM \rightarrow first
 - data by end of this year
 - Background validation
 - Low energy excess investigation and mitigation
- Relocation to Chooz planned early 2025

- Many low-threshold (cryogenic) detector experiments observe rising event rates of yet unknown origin below a few hundreds eV and above particle-background expectations...
- Significant impact on CEvNS sensitivity

- Many low-threshold (cryogenic) detector experiments observe rising event rates of yet unknown origin below a few hundreds eV and above particle-background expectations...
- Significant impact on CEvNS sensitivity
- Many ideas to investigate and mitigate it

Instrumented holders (e.g CRESST)

Pushing down ionization det. th. (e.g. Ricochet)

EDSU-Tools 2024

RED-100 @ Kalinin (Russia) Dual phase noble liquid TPC Successful data run with Xe, moving to Ar

irfu

Cea

NEWS-G³ Spherical proportional counter

Other experimental efforts...

NEON Low-treshold Nal (17 kg) @ Hanbit (Korea) Data taking on-going, probably some results soon

+ many more:

- SBC (Scintillating Bubble Chamber)
- RELICS (LXE TPC)
- BULLKID (Kinectic inductance detectors)
- •

- CEVNS is a blooming field in neutrino physics: new probe for BSM physics at the very low energy frontier, applications in nuclear physics, astrophysics and the long range detection of neutrinos (long-term future)
- A huge variety of detection techniques, mostly steaming from the DM community, are investigated
- At present, first detection at reactors remains to be done
 - Nuclear reactor environments very challenging !
 - Needs background, threshold & mass: currently no experiments fully demonstrated these three requirements together
 - CONUS (4-kg Ge) currently the closest to detection: factor 2 missing

Magnificent CEvNS workshop (2023, Munich)

Mag7s 2024 workshop next week in Valencia, probably new exciting results to come !

