

1

Compatibility and combination of W boson mass measurements

> Boris Tuchming Irfu CEA Paris-Saclay

on behalf of the LHC/Tevatron MW Working group

EDSU Tools 2024 - B. Tuchming

Combination of W mass measurements

W boson mass and Standard Model

- Standard Model
 - Electroweak symmetry breaking by Higgs mechanism thanks to a SU(2)_LxU(1)_Y doublet
 - Few parameters to describe the EW gauge sector
 - W boson mass determined by 3 other parameters at leading order

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F}$$

W boson mass and Standard Model

Standard Model

 $\Delta M_{W} \alpha M_{t}^{2}$

Quantum corrections modify the relation between masses and couplings

 $M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} \times \frac{1}{1 - \Delta r}$

Sensitivity to top mass, Higgs mass, and unknown particles

M

- Precision measurements of W boson mass
 - test Standard Model consistency
 - probe new physics and new particles at multi-TeV scales

D0 and CDF at Tevatron Run 2 2001-2011 2012 D0: M_w=80.375 ± 0.023 GeV 2012 CDF: M_w=80.387 ± 0.019 GeV 2022 CDF: M_w=80.434 ± 0.009 GeV

9

10

W mass at hadron colliders in a nutshell

- Collisions between quarks from (anti)protons
 - Unknown effective center of mass energy
 - Measure energy/momenta transverse to the collision axis : p_T (lepton), u_T = hadronic recoil
- Hadronic environements:
 - Use W leptonic decay $W \rightarrow \mu \nu$, $W \rightarrow e \nu$
 - Detector calibration from $J/\psi \rightarrow \mu^+\mu^-$, $Z \rightarrow \mu^+\mu^-$, $Z \rightarrow e^+e^-$
 - Measure hadronic recoils to infer missing transverse momentum from neutrino and reconstruct "transverse mass"
 - Proxy: m_T, p_T(lepton), p_T(miss)

- Spectra compared to templates to fit the mass
 - Model dependence of templates \rightarrow uncertainties
 - Detector response model
 - Final state radiation
 - Model of W transverse recoil (involves QCD at low energy)
 - Model of W production and decay (polarization)
 - Parton distribution functions (PDFs) describing boost along beam axis. Measurements sensitive to boost due to finite rapidity(=angular) acceptance of detectors.

Combination of W mass measurements

Combination of results

- LHC-Tevatron working group set up to combine latest most precise measurements
- Detailed inputs
 - LEP legacy combination of e⁺e⁻ collider at √s=130 – 209 GeV
 - CDF ppbar \sqrt{s} =1.96 TeV , 6 channels
 - fit variables p_T^{ℓ} , p_T^{ν} , $m_T^{\ell\nu}$ for $\ell=e,\mu$
 - D0 ppbar \sqrt{s} =1.96 TeV, 5 channels
 - fit variables p_T^{e} , p_T^{v} , m_T^{ev} for two time ranges
 - ATLAS pp \sqrt{s} =7 TeV , 28 channels:
 - fit variables p_T^ℓ, m_T^{ℓν}
 for ℓ=e⁺,e⁻, μ⁺, μ⁻ and different rapidity bins
 - LHCb pp \sqrt{s} =13 TeV , 1 channel
 - fit variable q/p_{T}^{μ} in forward region

50 mm		
Experiment	Event requirements	Fit ranges
CDF	$30 < p_T^\ell < 55 \mathrm{GeV}$	$32 < p_T^\ell < 48 \text{ GeV}$
	$ \eta_\ell < 1$	$32 < E_T^{miss} < 48 \mathrm{GeV}$
	$30 < E_T^{miss} < 55 \mathrm{GeV}$	$60 < m_T < 100 \text{ GeV}$
	$65 < m_T < 90 \text{ GeV}$	
	$u_T < 15 \mathrm{GeV}$	
D0	$p_T^e > 25 \mathrm{GeV}$	$32 < p_T^e < 48 \text{ GeV}$
	$ \eta_\ell < 1.05$	$65 < m_T < 90 \text{ GeV}$
	$E_T^{miss} > 25 \text{ GeV}$	
	$m_T > 50 \text{ GeV}$	
	$u_T < 15 \mathrm{GeV}$	
ATLAS	$p_T^{\ell} > 30 \mathrm{GeV}$	$32 < p_T^\ell < 45 \text{ GeV}$
	$ \eta_\ell < 2.4$	$66 < m_T < 99 \text{ GeV}$
	$E_T^{miss} > 30 \text{ GeV}$	
	$m_T > 60 \text{ GeV}$	
	$u_T < 30 \text{ GeV}$	
LHCb	$p_T^{\mu} > 24 \mathrm{GeV}$	$28 < p_T^{\mu} < 52 \mathrm{GeV}$
	$1.2 < \eta_{\mu} < 4.4$	

Combination of results

- LHC-Tevatron working group set up to combine latest most precise measurements
- Challenges
 - Measurements made over a number of years. QCD understanding and modeling has
 improved over time
 - Measurements need to be combined using a common ground
 - Consistent treatment of different theory assumption
 - Proper estimate of correlations

Combining results

- Starting point: different models as inputs to the different measurements
 - D0: Resbos CP (NNLO+NNLL) generated with CTEQ66 (NLO)
 - ATLAS: Powheg+Pythia8 (NLO+PS); $y_w + A_i$ at NNLO with CT10 (NNLO)
 - LHCb: Powheg+Pythia8 (NLO+PS); A, at NNLO, as PDF the average of NNPDF3.1, CT18, MSHT20 (NLO)
 - CDF: Resbos C (NLO+NNLL) generated with CTEQ6M (NLO). Final results corrected for using NNPDF 3.1
- Strategy for combination:
 - Each individual measurement has to be updated to a common baseline $m_W^{
 m update} = m_W^{
 m ref} + \delta m_W^{
 m PDF} + \delta m_W^{
 m QCD} + \delta m_W^{
 m other}$
 - Correlation have to be determined by consistently propagating change in model to each different measurement
 - Combination using Best Linear Unbiased Estimate (BLUE)
 - Approach validated by reproducing internal experimental combinations.
- Tool needed:
 - Fast emulation of D0/Atlas/CDF detector simulation to determine the impact of changes in W production model.
 - LHCb was able to re-run its own framework

Detector emulations

- ATLAS, CDF and D0 detectors emulated.
 - lepton energy smearing, reconstruction efficiency, p_{τ} , η dependent
 - smearing of measured recoil
- The emulations allow for processing quickly billions of events with different generators
 - use MiNNLOPS generator for our main results
- Agreements obtained at the percent level between individual simulations and LHC-TeV MWWG emulations.
- This is translated to MeV-level uncertainties for the estimate of $\delta m \dot{s}$.

QCD model : W polarisation

• Improvement over years for the computation of angular terms

$$\frac{d\sigma}{dp_T^W dy d\Omega} = \frac{d\sigma}{dp_T^W dy} \left[(1 + \cos^2 \theta) + \frac{1}{2} A_0 (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi \right. \\ \left. + \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta \right. \\ \left. + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right]$$

- Older models at D0 and CDF need to be updated
- Consistent results obtained when
 - reweighting angular distributions
 - using more modern generator

Choice of PDF

- Several PDFs on the phenomenology "market"
- Compatibility of PDF sets tested using pp, ppbar → W,Z measurements (differential distributions, asymmetries) using xFitter package

Measurement	NNPDF3.1	NNPDF4.0	MMHT14	MSHT20	CT14	CT18	ABMP16
$CDF y_Z$	24 / 28	28 / 28	30 / 28	32 / 28	29 / 28	27 / 28	31 / 28
$CDF A_W$	11 / 13	14 / 13	12 / 13	28 / 13	12 / 13	11 / 13	21 / 13
D0 y_Z	22 / 28	23 / 28	23 / 28	24 / 28	22 / 28	22 / 28	22 / 28
D0 $W \to e\nu A_{\ell}$	22 / 13	23 / 13	52 / 13	42 / 13	21 / 13	19 / 13	26 / 13
D0 $W \to \mu \nu A_{\ell}$	12 / 10	12 / 10	11 / 10	11 / 10	11 / 10	12 / 10	11 / 10
ATLAS peak CC y_Z	13 / 12	13 / 12	58 / 12	17 / 12	12 / 12	11 / 12	18 / 12
ATLAS $W^- y_\ell$	12 / 11	12 / 11	33 / 11	16 / 11	13 / 11	10 / 11	14 / 11
ATLAS $W^+ y_\ell$	9 / 11	9 / 11	15 / 11	12 / 11	9 / 11	9 / 11	10 / 11
Correlated χ^2	75	62	210	88	81	41	83
Total χ^2 / d.o.f.	200 / 126	196 / 126	444 / 126	270 / 126	210 / 126	162 / 126	236 / 126
$\mathrm{p}(\chi^2,n)$	0.003%	0.007%	$< 10^{-10}$	$< 10^{-10}$	0.0004%	1.5%	10^{-8}

- No PDF set provides a good description of the full Tevatron+LHC dataset.
- Best description given by CT18 (which has slightly larger uncertainties).
- CT18 taken as the main PDF set for the final combination

Impact of PDF choice

- Impact of the different PDF choice is computed
- Typically $\delta m_w = O (10 \text{ MeV})$

	PDF set	$D0p_{\mathrm{T}}^{\ell}$	$D0p_{\mathrm{T}}^{\nu}$	CDF p_{T}^{ℓ}	$\mathrm{CDF} \ p_\mathrm{T}^\nu$	ATLAS W^+	ATLAS W^-	LHCb
	CTEQ6	- 17.0	- 17.7	0.0	0.0	_	_	_
starting points	CTEQ6.6	0.0	0.0	15.0	17.0			_
of published results	CT10	0.4	- 1.3	16.0	16.3	0.0	0.0	_
	CT14	- 9.7	-10.6	5.8	6.8	-1.2	-5.8	1.1
	CT18	-8.2	- 9.3	7.2	7.7	12.1	-2.3	-6.0
For final combination	ABMP16	-19.6	-21.5	-1.4	-2.4	-22.5	-3.1	7.7
	MMHT2014	-10.4	-12.7	6.1	5.5	-2.6	9.9	-10.8
	MSHT20	-13.7	-15.4	3.6	4.1	-20.9	4.5	-2.0
	NNPDF3.1	-1.0	-1.2	14.0	15.1	-14.1	-1.8	6.0
	NNPDF4.0	6.7	8.1	20.8	24.1	-22.4	6.9	8.3

 δm_{W}^{PDF} (MeV), for p_{T} (lepton), p_{T} (miss) channels

• Final result using CT18 (see previous slides)

Impact of PDF choice

- Impact of the different PDF choice is computed
- Typically $\delta m_{W} = O (10 \text{ MeV})$

				-	
	PDF set	D0	CDF	ATLAS W^+	ATLAS W^-
	CTEQ6	-14.6	0.0	_	_
starting points	CTEQ6.6	0.0	14.2	_	_
of published results	CT10	-0.5	14.3	0.0	0.0
1	CT14	-8.7	5.2	-0.5	-7.6
[CT18	-7.5	6.5	13.4	-5.5
For final combination	ABMP16	-17.9	-2.4	-25.7	-7.9
	MMHT2014	-10.1	4.5	-3.6	9.1
	MSHT20	-12.9	2.5	-22.3	4.2
	NNPDF3.1	-1.0	13.1	-14.6	-6.3
	NNPDF4.0	6.2	20.1	-23.3	4.3

 δm_{W}^{PDF} (MeV), for m_{T} channels

• Final result using CT18 (see previous slides)

PDF correlations

- PDFs are the main source of correlations for final combination
 - Different correlations and uncertainties for each PDF set.
 - Anti-correlations LHCb/Atlas as they are probing different rapidity region
 - CT18 uncertainties 10 –15 MeV

7.7

8.6

6.6

7.7

7.4

5.3

7.0

4.1

NNPDF3.1

NNPDF4.0

Inputs to combination

- Updates are computed for different input PDFs $m_W^{
 m update} = m_W^{
 m ref} + \delta m_W^{
 m PDF} + \delta m_W^{
 m QCD} + \delta m_W^{
 m other}$
- A few other adjustments needed for a consistent treatment
 - O(1) MeV level δm_w for a consistent Γ_w of (SM) 2.089 GeV between experiments
 - Generator level cuts in CDF mass involving a 2 MeV shift
 - When combining sub-channels, another O(3) MeV shift may arise from differences in weights due to modified PDF uncertainties
- Example of update (For our choice of main PDF (CT18)

Publications (MeV)

CT18 input to combination

Atlas	80370	±19
CDF	80433.5	± 9.4
D0	80375	± 23
LHCB	80354	± 32

• At the end the updated values are close ($|\delta m_w| < 7 \text{ MeV}$) to original measurements

Combination

- Account for individual uncertainties
- Account for correlations
 - Statistical correlations between distributions p_T , m_T , p_T^{ν}
 - P_T(W) model is constrained using (Z) data in the different experiments, uncertainties of 2 –11 MeV treated as uncorrelated
 - Small correlated uncertainty ~ 2.5 5 MeV between CDF and D0 due to photon radiation model
 - Main source of correlations across experiments is PDF
- Two steps
 - Individual channels combination within each experiment
 - combination across all experiments

Overall combinations

LHC-TeV MWWG

All experiments	s (4 d.o.f.)			
PDF set	m_W	$\sigma_{\rm PDF}$	χ^2	$p(\chi^2, n)$
ABMP16	$80,392.7 \pm 7.5$	3.2	29	0.0008%
CT14	$80,\!393.0\pm10.9$	7.1	16	0.3%
CT18	$80,394.6 \pm 11.5$	7.7	15	0.5%
MMHT2014	$80,398.0 \pm 9.2$	5.8	17	0.2%
MSHT20	$80,395.1 \pm 9.3$	5.8	16	0.3%
NNPDF3.1	$80,403.0 \pm 8.7$	5.3	23	0.1%
NNPDF4.0	$80,\!403.1\pm 8.9$	5.3	28	0.001%

- For each PDF overall combinations has a poor χ^2
- Combination using CT18
 - m_w=80394.6 ± 11.5 MeV
 - but is disfavored as the probability is quite low Prob(χ^2)=0.5%

Subcombination N-1

• Combination obtained when subtracting one of the inputs

- Combinations without CDF have good compatibility
 - m_w=80369.2 ± 13.3 MeV with CT18
 - Relative weights: 42% (ATLAS); 23% (D0); 18% (LHCb); 16% (LEP).
- Difference between CDF and the All-CDF combination is 3.6σ using CT18

EDSU Tools 2024 - B. Tuchming

Combination of W mass measurements

Summary

- W boson mass is a key parameter of the Standard Model
- Combination of the experimental results within the LHC-TeV W mass group
 - Procedure and tools setup to obtain
 - consistent treatment of inputs for a proper combination
 - update W polarization model
 - common PDF set
 - compute correlations
 - This effort is not able to solve the tension between existing measurements
 - Full combination using CT18 has low probability Prob(χ^2)=0.5%
 - CDF measurement is 3.6σ from the other ones
- Combinations without CDF have good compatibility
- Using CT18 we obtain

m_w=80369.2±13.3 MeV

Prospects

- LHC-TeV MWWG planning to update results
 - Atlas submitted recently an update using profiling techniques
 - This will likely worsen the discrepancy between CDF and the others
- Also aim to include CMS measurement
 whenever it is out

Tev/LHC MWWG papers

- CERN-LPCC-2022-06/FERMILAB-TM-2779-V
- EPJC 84 (2024) 451

More info: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHC-TEV-MWWG

BACKUP

PDG calculation

- No correction for common PDF set
- Does not include CDF 2022 but keep CDF 2012 measurement
- Guess estimate of correlated uncertainties
 - 9 MeV correlated between Atlas&LHCb
 - 7 MeV correlated between Tevatron&LHC

EDSU Tools 2024 - B. Tuchming

Combination of W mass measurements

References – PDFs

- CTEQ6 JHEP 07 (2002) 012
- CTEQ6.6 PRD 78 (2008) 013004
- CT10 PRD 82 (2010) 074024
- CT14 PRD 93 (2016) 033006
- CT18 PRD 103 (2021) 014013
- ABMP16 PRD 96 (2017) 014011
- MMHT2014 EPJC 75 (1015) 204
- MSHT20 EPJC 81 (2021 341
- NNPDF31 EPJC 77 (2017) 663
- NNPDF40 EPJC 82 (2022) 428
- xFitter, arXiv:1709.01151