New results for thermal axion production in the early Universe

Killian Bouzoud

SUBATECH

EDSU Tools 2024, 07/06/2024

NantesUniversité

Contents of the presentation

Introduction

- Model
- Axion dark radiation
- Experimental motivation
- Production rate computation
 - Perturbation theory
 - Collective effects
 - Results for the production rate

- 3 Kinetic theory
 - Boltzmann equation
- Phenomenological results
- 5 Conclusion and outlook
 - Future possible improvements
 - Automation

Based on *K. Bouzoud*, J. Ghiglieri - Thermal axion production at hard and soft momenta (2404.06113)

Model

Axion:

- Good dark matter candidate ($m_a \lesssim 10^{-1} \text{ eV}$ from experimental bounds)
- Solves the "strong CP problem"

Kim-Shifman-Vainshtein-Zakharov (KSVZ) model

$$\mathcal{L}_{\rm int} = \frac{g_3^2}{32\pi^2} \frac{a}{f_{\rm PQ}} G \tilde{G} \tag{1}$$

 $f_{\rm PO}$: energy scale below which the axion exists ($\geq 4 \times 10^8 \text{ GeV}$ from experimental bounds)

The axion only interacts with gluons

Figure: All tree-level processes in the KSVZ model producing **one** axion in the final state

Axion dark radiation

If $\mathcal{L}_{\mathrm{int}}$ is realized in nature:

- $\bullet\,$ Bose-Einstein condensate axion population $\equiv\,$ dark matter
- Ultra-relativistic ("hot") axion population \equiv dark radiation \rightarrow focus of this talk

Extra contribution to the effective number of neutrinos

Measure of the contribution of the hot axion population to the energy density of the Universe. Defined as:

$$\Delta N_{\rm eff} = \frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \left. \frac{e_a}{e_\gamma} \right|_{\rm CMB} \tag{2}$$

Figure: Phenomenological computation flowchart

Current results

From **Planck** at 2σ : $\Delta N_{\rm eff} < 0.3$

Future experiments

Expected constraint (at 2σ):

- From Simons Observatory: $\Delta N_{\rm eff} < 0.1$
- From CMB-S4: $\Delta N_{
 m eff} < 0.06$
- From CMB-HD: $\Delta N_{
 m eff} < 0.028$

 \rightarrow More precise future experiments motivate more precise theoretical computations

Figure: $\Delta N_{\rm eff}$ as a function of the decoupling temperature for a BSM scalar

Production rate computation Perturbation theory
Phase space integral
$$2 \rightarrow 2 \text{ scatterings}$$

$$\Gamma_{a}(k) = \frac{1}{4k} \int d\Omega_{2\rightarrow 2} \sum_{A,B,C} |\mathcal{M}_{A+B\rightarrow C+a}|^{2} \frac{f_{A}(p_{1})f_{B}(p_{2})[1 \pm f_{C}(k_{1})]}{n_{B}(k)}$$
(3)
$$n_{B} \text{ or } n_{F}$$

 $f_i \equiv$

Different methods exist for implementing the collective effects. They converge for small values of g_3 (QCD coupling constants) but become extrapolations at larger g_3 .

The "spread" between those methods can be used to quantify the theoretical uncertainty.

We implemented three different methods:

"Strict LO"

Already implemented for the axion case in Peter Graf, Frank Daniel Steffen, *Thermal axion production in the primordial quark-gluon plasma* (1008.4528)

• Leads to large negative values

"Subtraction"

Previously implemented for the neutrino case in J. Ghiglieri, M. Laine, *Neutrino dynamics below the electroweak crossover* (1605.07720)

• Reduces the negativity but does not fix it entirely

"Tuned"

Previously implemented for YM dynamics in M. C. A. York, A. Kurkela, E. Lu, G. D. Moore, *UV Cascade in Classical Yang-Mills via Kinetic Theory* (1401.3751)

No negative values

Figure: Axion production rate at $T = 10^4 \text{ GeV}$

Figure: Axion production rate at T = 0.3 GeV

• Use
$$\Gamma_{\text{used}} \equiv \max(0, \Gamma_{\text{computed}})$$
.

• Initial condition:
$$f_a(T_{\max}) = n_B(T_{\max})$$

Beyond momentum-independent approximation

Solve for multiple momenta **instead of** using integrated *approximate* form giving energy density

Killian Bouzoud (SUBATECH)

Figure: (Normalized) axion energy density

"Equilibrium"
$$\equiv$$
 energy density for $f_a = n_B$

- Main source of theoretical uncertainty is the choice of production rate computation method (\sim 0.002 at most)
- The error due to the momentum-independent approximation is smaller than that (\sim 0.0005 at most)
- These conclusions might change if delayed production (at QCD transition or after) happens
- CMB-HD would be more constraining than the current astrophysical limit

Inclusion of QCD transition effects

- Use effective number of colors *N*_{*C*,eff}
- Do the same analysis below QCDPT using the χPT Lagrangian and merge the two rates (similar to d'Eramo et al. in 2108.05371)

Figure: Normalized axion energy density for $f_{\rm PQ}$ close to the astrophysical limit

Conclusion and outlook

Automation

Figure: Flowchart of the production rate computation process

Killian Bouzoud (SUBATECH)

Figure: Flowchart of the production rate computation process

Killian Bouzoud (SUBATECH)

Momentum-dependent method vs. momentum-averaged approximation

- Planck Collaboration, Planck 2018 results. VI. Cosmological Parameters (1807.06209)
- Simons Observatory Collaboration, *The Simons Observatory: Science goals and forecasts* (1808.07445)
- CMB-S4 Collaboration, Snowmass 2021 CMB-S4 White Paper (2203.08024)
- CMB-HD Collaboration, Snowmass 2021 CMB-HD White Paper (2203.05728)
- Jihn E. Kim, *Weak-Interaction Singlet and Strong CP Invariance* (Phys. Rev. Lett. 43, 103)
- Mikhail A. Shifman, A.I. Vainshtein, Valentin I. Zakharov, *Can Confinement Ensure Natural CP Invariance of Strong Interactions* (Nucl. Phys. B 166)
- Pierluca Carenza, Tobias Fischer, Maurizio Giannotti, Gang Duo, Gabriel Matrinez-Pinedo, Alessandro Mirizzi, *Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung* (1906.11844)