

The TRIUMF Ultra Cold Advanced Neutron source and EDM experiment

Alexis Brossard On behalf of the TUCAN collaboration

Exploring the Dark Side of the Universe Tools 2024 – 5th World Summit Noirmoutier Island June 7th, 2024

Ultracold Neutron

Neutron production, cooling and ultra-cooling:

• Spallation source:

• Cooling with thermal moderator:

• Phonon emission in superfluid He-4

UCN confinement

• Magnetic Field:

$$\mu_N = 60.3 \ \frac{\text{neV}}{\text{T}}$$

• Gravity:

$$V_g = m_n g z = \left(102.5 \ \frac{\text{neV}}{\text{m}}\right) z$$

В

• Strong force:

$$V(\vec{r}) = \frac{4\pi\hbar^2}{2m} \sum_i a_i \delta(\vec{r} - \vec{r}_i') \qquad E_{kin} < V_F:$$

Material	V _F (neV)	v (m/s)
AI	54	3.2
⁵⁸ Ni	350	8.2
Graphite	180	5.9
Stainless Steel	188	6
DLC	282	7.3

В

UCN can be stored

TUCAN method

TUCAN first prototype:

- First UCN on November 13, 2017
- 2 10⁴ UCN/s
- Decommissioned in 2019
- Validate components and simulation for the new source
- Gives first operational experience

• 1.12 ± 0.03 K

TUCAN UCN source recipe

0.8 K

⁴He

2.5 m

%TRIUMF

- 480 MeV protons on tungsten create spallation neutrons
- 2. lead, graphite and heavy water **moderate** fast neutrons (MeV) to thermal neutrons (25 meV)
- 3. liquid deuterium at 20 K moderates further to create a large cold flux (1 meV)
- 4. ⁴He at around 1 K converts 1 meV (9Å) neutrons to UCN (< 215 neV)
- 5. Extraction to experiments via material guides

graphite

20 K LD₂

 $D_{2}O$

lead

protons

Keeping 27 liters of isopure Helium-4 at 1K under 10-Watt heat load

Source in commissioning phase. First UCN production this fall. Full source next summer. World leading source 1.6 x 10⁷ UCN/s

Neutron electric dipole moment measurement

Neutron Electric Dipole Moment violates CP symmetry

- Violates T & CP symmetry
- Test of beyond-Standard Model
 theories
- Can be detected by measuring precession frequency in electric and magnetic field
- Ultracold neutron (E<300 neV) are suitable for such measurement.

B0

B1

Ramsey's method of separated oscillatory fields

Statistical uncertainty:

- α: Visibility, neutron polarization. Account for polarization at the beginning of the cycle, depolarization during the cycle and efficiency of the spin analyzer.
- E: Electric field strength. Limited by the cell breakdown voltage
- N: Number of neutron detected, needs for high efficiency at few 100 kHz detection rate
- *T:* Free precession time, must be optimized considering neutron decay, absorption, storage lifetime, de-polarization...

TUCAN METHOD:

- 120 kV/m electric field •
- 1 uT magnetic field ٠
- ~8.5 nT transverse field •
- Magnetically shielded room ٠

٠

Cesium magnetometry and Hg/Xe co-• magnetometry

(4) Spin Sensitive Analyzer

polarization

Cell lifetime measurement

Cell HV test

Magnetically shielded room

Magnetometry

Time to reach 10^{-27} ecm = 281 ± 16 days

16 S. Sidhu et al, 2022: <u>https://doi.org/10.1051/epjconf/202328201015</u>

- $d_n < 1.8 \times 10^{-26} \text{ ecm } (90\% \text{ C.L.})$ C. Abel et al., Phys. Rev. Lett. 124, 081803 (2020)
- Many groups pursuing ~ 10⁻²⁷ ecm measurement as next step

T. Higuchi on behalf of the TUCAN collaboration EPJ Web of Conferences 262, 01015 (2022)

UCN source

Advanced Neutron source

February 2024 Collaboration Meeting, Winnipeg

UNIVERSITY OF SASKATCHEWAN

UCN for neutron radioactive period measurement

- UCN Bottle Measurements
- Store UCN in a container
- Count how many UCN are left over after waiting for some time

- 7/8 best measurements: Ezhov, Pattie, Serebrov, Arzumanov, Steyerl, Pichlmaier, Serebrov
- $\tau_n = 879.4 \pm 0.6 \text{ s}$

Neutron Beam Measurements

- Direct a beam of cold neutrons down a long volume
- Capture decay protons using magnetic fields
 and count them

1/8 best measurements: Yue

 $\tau_n = 887.7 \pm 2.2 \text{ s}$

*Nico result (2005) was superseded by an updated and improved result, Yue (2013); †Preliminary results

PEnELOPE

Store UCN into a magneto-gravitational trap.

Detect proton from neutron decay and surviving UCN.

Keeping 27 liters of isopure Helium-4 at ~1 K under 10-Watt heat load

Three gases:

- Natural Helium
- > Helium-3
- ➢ Isopure Helium-4

This challenge implies state-of-the-art:

- Cryostat
- ^{nat}He liquefier
- Liquid ^{nat}He transfer line
- Cryostat
- Heat exchanger
- Pump
- ³He and ⁴He gas handling

• ...

W. Schreyer

Precession cell: UCN storage test

Precession cell: Electrical properties:

HV discharge testing of electrodes, insulators, coatings, comagnetometer gases.

Magnetometry

Hg comagnetometer prototype achieved 10s free precession, 1 pT resolution Goal: 10 fT

Operating 5 optical Cs magnetometers & 5 more on order

UCN detection

Scintillating stacks Lithium detector:

 $^{6}\text{Li} + n \rightarrow \alpha(2.05\text{MeV}) + t(2.73\text{MeV})$

The upper layer is 60 μ m thick depleted ⁶Li glass (0.01 %), and the lower layer is 120 μ m thick doped ⁶Li (95 %) glass. Ensure energy deposition in scintillating glass.

Fast signal 6 ns rise time 55 ns fall time allows for MHz detection. 89.7 % efficiency