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LHC:	Collider	physics

• LHC: 
• pp collision 
• Collision every 25 ns (40 MHz)
• Multiple Petabytes of data per 

experiment per year 
• This presentation mostly focuses 
on ATLAS and CMS

s = 14 TeV
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• Proton-Proton collision: 
produces new particles
•Most decay before reaching 
the detectors
•Need complex reconstruction 
algorithms to reconstruct the 
original particles 



Object	reconstruction	@	the	LHC
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• Typical detector:
➡ Tracker:                           
charged particle trajectories 

➡ Calorimeter (em & had):    
Energy of the particles (jets) 

➡ Muons spectrometer:         
Detect the muons (cross the 
entire detector) 

• Pileup:
➡ Many interactions per crossing (~50 now; 200 in the future)
➡ Complex algorithm needed for reconstruction 
➡ High CPU cost



Why	use	deep	learning	?
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Tremendous amount of data at 
the LHC:
•Huge amount of computing power 
needed to reconstruct the data
• Even more needed to simulate 
events for analysis
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ATLAS Preliminary

Impact on the analysis (Higgs 
boson) at the LHC:
•Usually ~ 10 variables BDT (ML)
• Equivalent to collecting ~50% more 
data (~ +0.5 billion CHF per year)
•Maximise our use of the LHC 



Particles	Trajectory	
reconstruction

5Corentin	Allaire	@	EDSU	202404	June,	2024



Charged	particle	tracking
•Connect together hits coming from the 
same particles
• Extremely high combinatorics 
• Tracking involves complex algorithms: 
Kalman Filtering
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• Intensive in computing resources (dominate the 
reconstruction)
• Try to maintain good performances in future 
high combinatorics conditions
•Can Deep learning help us achieve our goals?



Sparse	data	:	Graph	Neural	Network
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•HEP Data   Too sparse for image 
processing techniques 
• Easy to represent as graphs                

 Graph Neural Network
•Graph:
• Nodes 

• Connected via Edges 

•With global variables  
• Propagate information through the 
graph with a NN
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GNN	Tracking	:	GNN4ITk
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• Applied to charged particles tracking 
with the future ATLAS tracker (ITk) 
• Treat all hits as nodes
• Try to classify the edges                     

 good edges = track path
•Competitive physics results
•Complexe graph construction step

Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain

CTD	2023

https://cds.cern.ch/record/2871986/
https://indico.cern.ch/event/1252748/contributions/5576737/


Particles	Identification	

9Corentin	Allaire	@	EDSU	202404	June,	2024



Jet	tagging
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• Jets: 
•Collimated spray of particles
•Originate from a single quark or gluon
•Reconstructed via Calorimeter+Tracker

• Identifying if a jet comes from a b quark,  c 
quark, light quark, or a gluon is extremely 
important for various analysis 



Transformers
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• Used in most large language models (LLM), 
i.e., chatGPT 
• Great success: Used for many different 

applications: classification, regression, data 
generation
• Attention mechanisms: Learn the 

correlations that exist between the different 
inputs

Attention Is All You Need

https://arxiv.org/abs/1706.03762


Flavour	tagging	with	transformers
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• Applied transformer-based technique to 
jet flavour reconstruction 
• Tested in the CMS experiment                 

 better than previous DL approaches
• Inputs:
• Information on the particles in the jets (up to 

100)
• « Interactions »: variable related to 2 

particles
•  Learn the correlation between all the 
particles to extract the flavour 
information

CMS-DP-2022-050

Particle Transformer for Jet Tagging

https://cds.cern.ch/record/2839920/
http://www.arxiv.org/abs/2202.03772


Events/Detectors	
Simulations
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Event	Simulation
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Simulators:
•Combine a precise simulation of the physics 
process with a proper accounting for the 
particle-matter interaction (Geant4)
•Result in extremely realistic detector 
signatures 
•With available ground truth 

• Standard in the HEP community since the 
seventies
• The basis for most physics analysis
•Requires a large amount of person-power
• Biggest CPU resources consumer for 
most LHC experiments
•  Can we still use them in the future?



Generative	Adversarial	Network
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•Generative model: Create an object (picture) from random noise
•  Uses two networks: 
• A Generator: Create data from noise
• A Discriminator: Try to separate the generated data from the training data

• Unsupervised learning, where the Generator tries to trick the discriminator 
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Calorimeter	Simulation	:	GAN
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• Tries to simulate jet energy deposition in a 
Calorimeter (ATLAS)
•Good agreement with G4 shower
•Generate realistic showers 100x faster
•Hard to train, other approaches being 
studied:
• Variational auto-encoder
•Diffusion Model

E	Layer	2

Deep	generative	models	for	fast	shower	simulation	in	ATLAS

https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012077


Data	Analysis

17Corentin	Allaire	@	EDSU	202404	June,	2024



Simulation	based	inference
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• « Historical »HEP analysis: binned histogram 
on a particles-level variable used to compute a 
likelihood ratio between two hypothesis
•When looking at more complex processes           

 a single variable is not enough
•We would like to test multiple hypotheses

• SBI: use an NN binary classifier to 
estimate directly the likelihood ratio
•Can operate in high-dimension 
variable space
•Unbinned (can be applied event by 
event)

NN	score	for	classifier	:	
	Hypothesis	 	/	Null	Hypothesis(ref)θi

Likelihood	ratio	for	hypothesis	θiData

Constraining	Effective	Field	Theories	with	Machine	Learning

https://arxiv.org/abs/1805.00013


Simulation	based	inference
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•Allows us to extract directly the likelihood ratio 
•Large number of networks trained to account for NN uncertainty
•Analysis soon to be published demonstrating those methods



Conclusion

• Machine Learning is becoming a major tool for LHC experiments

• Long history of ML use: early adopters of the BDT techniques

• Used everywhere from Reconstruction to Simulation and Analysis

• Future developments are planned using the latest network architectures
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Backup
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