Learning Reionization History with Quasar IGM Damping Wings

Timo Kist, PhD candidate at Leiden Observatory Supervisor: Joseph F. Hennawi

Universiteit Leiden

Image Credit: NASA, ESA, CSA, Joseph Olmsted (STScI)

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Proximity Zones & IGM Damping Wings

redshift

Credit: <u>Choudhury 2022</u>

Quasars in a Reionizing Universe Proximity Zones & IGM Damping Wings

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Proximity Zones & IGM Damping Wings

Gunn-Peterson trough:

Complete absorption in the Ly-lpha forest region starting at IGM neutral fractions $\langle x_{\rm HI} \rangle \gtrsim 10^{-4}$

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Proximity Zones & IGM Damping Wings

Gunn-Peterson trough:

Complete absorption in the Ly-lpha forest region starting at IGM neutral fractions $\langle x_{\rm HI} \rangle \gtrsim 10^{-4}$

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Proximity Zones & IGM Damping Wings

Quasar proximity zone: The quasar carves out an ionized bubble whose size depends on its lifetime

Quasars in a Reionizing Universe Proximity Zones & IGM Damping Wings

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Proximity Zones & IGM Damping Wings

IGM damping wing: At $\langle x_{\rm HI} \rangle = O(0.1)$, even the Lorentzian wing of the Lyman- α cross section becomes visible

Euclid will find hundreds of QSOs at z > 6

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Proximity Zones & IGM Damping Wings

IGM damping wing: At $\langle x_{\rm HI} \rangle = O(0.1)$, even the Lorentzian wing of the Lyman- α cross section becomes visible

Forward-Modelling Damping Wing Absorption

Constructing realistic skewers based on cosmological simulations

around the most massive DM halos

Predicting the Quasar Continuum A low-redshift PCA model

PCA decomposed continuum: $s_{DR}(\xi) = \langle s \rangle + \xi \cdot A$

Hennawi, **Kist**, Davies & Tamanas 2024

- 15 559 SDSS-autofit spectra $(2.149 < z < 4, R \sim 2000, S/N > 10)$
 - 95% 5% training-test split:
 - Training set of 14 781 low-redshift spectra to build PCA model
 - Test set of 778 spectra to draw mock continua and estimate reconstruction error

DATA

Real (or mock) quasar spectrum with observational noise

MODEL

Quasar continuum model

Reconstruction error stochastic process

IGM transmission field stochastic process

- & IGM damping wing
- (red- and blueward of Lyman- α)
- Fast GPU-accelerated JAX-based (runtimes ~15 min)

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Kist, Hennawi & Davies 2024a

DATA

Real (or mock) quasar spectrum with observational noise

MODEL

Quasar continuum model

Reconstruction error stochastic process

IGM transmission field stochastic process

- & IGM damping wing
- (red- and blueward of Lyman- α)
- Fast GPU-accelerated JAX-based (runtimes ~15 min)

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Hamiltonian Monte Carlo implementation

Kist, Hennawi & Davies 2024a

DATA

Real (or mock) quasar spectrum with observational noise

MODEL

Quasar continuum model

Reconstruction error stochastic process

IGM transmission field stochastic process

- Likelihood operates on the **entire** spectrum (red- and blueward of Lyman- α)
- Fast GPU-accelerated JAX-based Hamiltonian Monte Carlo implementation (runtimes ~15 min)

DATA

Real (or mock) quasar spectrum with observational noise

MODEL

Quasar continuum model

Reconstruction error stochastic process

IGM transmission field stochastic process

- Fast GPU-accelerated JAX-based Hamiltonian Monte Carlo implementation (runtimes ~15 min)

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

POSTERIOR

(X_{HI})

Kist, Hennawi & Davies 2024a

Timo Kist, Leiden Observatory, <u>kist@strw.leidenuniv.nl</u>

Main sources of uncertainty: continuum reconstruction and stochasticity of ionized bubble sizes

Variation across parameter space

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Main sources of uncertainty: continuum reconstruction and stochasticity of ionized bubble sizes

Measuring the local HI content in front of a quasar Introducing a new label for the HI column density

Measuring the local HI content in front of a quasar Introducing a new label for the HI column density

Introducing a new label for the HI column density

Introducing a new label for the HI column density

Quantifying $N_{\rm HI}^{\rm DW}$ Inference Precision Variation across parameter space

 1σ -uncertainty on $\log_{10} N_{\rm HI}^{\rm DW}$

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Quantifying $N_{\rm HI}^{\rm DW}$ Inference Precision Variation across parameter space

 1σ -uncertainty on $\log_{10} N_{\rm HI}^{\rm DW}$

Timo Kist, Leiden Observatory, <u>kist@strw.leidenuniv.nl</u>

Inferring $N_{\rm HI}^{\rm DW}$ in front of a z = 6.83 quasar A JWST spectrum of J0411-0907 R (pMpc) Ļ Si-HI -Si-II Si₌lV C III D -Al-III- \cap

Inferring $N_{\rm HI}^{\rm DW}$ in front of a z = 6.83 quasar A JWST spectrum of J0411-0907 R (pMpc) 1400 1600 1800 2000 2200 2400 2600 5 6 5 inferred continuum 1 1 1 1 1 1 1 1 1

Inferring $N_{\rm HI}^{\rm DW}$ in front of a z = 6.83 quasar A JWST spectrum of J0411-0907 R (pMpc) 1400 1600 1800 2000 2200 2400 2600 5 6 5 inferred continuum 1 1 1 1 1 1 1 1 1

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Kist, Hennawi & Davies 2024c (in prep.)

Samples from a <u>Wang+2019</u> quasar luminosity function

Samples from a <u>Wang+2019</u> quasar luminosity function

Samples from a <u>Wang+2019</u> quasar luminosity function

Constraining Reionization History with EUCLID & JWST

0.0

0.5

 $\langle x_{\rm HI} \rangle$

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

A forecast of upcoming IGM damping wing constraints

0.0

0.5

 $\langle x_{\rm HI} \rangle$

0.0

0.5

 $\langle x_{\rm HI} \rangle$

1.0

Constraining Reionization History with EUCLID & JWST

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

A forecast of upcoming IGM damping wing constraints

Constraining Reionization History with EUCLID & JWST

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

A forecast of upcoming IGM damping wing constraints

Kist, Hennawi & Davies 2024c (in prep.)

Fast HMC pipeline to infer $\langle x_{\rm HI} \rangle$ and $t_{\rm Q}$ using the damping wing imprint of highredshift quasars

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Summary

Inferring $\langle x_{\rm HI} \rangle$ at $28.0^{+8.2}_{-8.8}$ % precision, or even the local HI **column density at** $0.69^{+0.34}_{-0.53}$ dex

EUCLID & JWST: 3-8% constraints on $\langle x_{\rm HI} \rangle (z)$ **between** $6 \leq z \leq 11$

Backup Slides

Converting the constraints The global IGM neutral fraction inferred from J0411-0907

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Kist, Hennawi & Davies 2024b (in prep.)

Converting the constraints The global IGM neutral fraction inferred from J0411-0907

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Global IGM neutral fraction

Converting the constraints The global IGM neutral fraction inferred from J0411-0907

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Kist, Hennawi & Davies 2024b (in prep.)

Hennawi, Kist, Davies+ 2023a (in prep.)

Impact on Inference Precision

Hennawi, Kist, Davies+ 2023a (in prep.)

Impact on Inference Precision

Hennawi, Kist, Davies+ 2023a (in prep.)

Hennawi, Kist, Davies+ 2023a (in prep.)

Impact on Inference Precision

Hennawi, Kist, Davies+ 2023a (in prep.)

Impact on Inference Precision

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

The PCA Continuum Model

Impact on Inference Precision

Average precision of 100 mock samples:

n_{latent}

- All information about the Lyman- α forest is encoded in the first few PCA vectors
- → Additional latent dimensions improve the continuum fit but lose constraining power

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

The PCA Continuum Model

Impact on Inference Precision

n_{latent}

- All information about the Lyman- α forest is encoded in the first few PCA vectors
- → Additional latent dimensions improve the continuum fit but lose constraining power

Observational Setup

Impact on Inference Precision

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

S/N per 100 km/s velocity interval

→ Covering major emission lines is important

Kist, Hennawi, Davies+ 2023a (in prep.)

Timo Kist, Leiden Observatory, Reionization in the Summer 28.6.2023

Quantifying $\langle x_{\rm HI} \rangle$ Inference Precision

Variation across Model Components and Parameter Space

 Precision varies significantly across parameter space (between 2.6% and 39.3%)

• Median precision: 23.4%

• Strönger damping wing imprint (higher $\langle x_{\rm HI} \rangle$, lower $t_{\rm O}$) improves precision

"Fiducial" region of parameter space

Kist, Hennawi, Davies+ 2023a (in prep.)

Timo Kist, Leiden Observatory, Reionization in the Summer 28.6.2023

Quantifying $\langle x_{\rm HI} \rangle$ Inference Precision

Variation across Model Components and Parameter Space

 Precision varies significantly across parameter space (between 2.6% and 39.3%)

• Median precision: 23.4%

• Stronger damping wing imprint (higher $\langle x_{\rm HI} \rangle$, lower $t_{\rm O}$) improves precision

"Fiducial" region of parameter space

Overall median: 2.2% Fiducial median: 2.4%

Overall median: 14.9% Fiducial median: 15.3%

Overall median: 2.2% Fiducial median: 2.4%

Overall median: 14.9% Fiducial median: 15.3%

Timo Kist, Leiden Observatory, Reionization in the Summer 28.6.2023

Kist, Hennawi, Davies+ 2023a (in prep.)

Continuum-normalized Model Full Continuum Model

Overall median: 2.2% Fiducial median: 2.4%

Overall median: 14.9% Fiducial median: 15.3%

Continuum-normalized Model Full Continuum Model

Overall median: 2.2% Fiducial median: 2.4%

Overall median: 14.9% Fiducial median: 15.3%

Quantifying t_O Inference Precision Variation across Model Components and Parameter Space

Continuum-normalized Model Full Continuum Model

Overall median: 0.12 dex Fiducial median: 0.08 dex

Overall median: 0.54 dex Fiducial median: 0.71 dex

Inference Tests Expected coverage probability

- testing if the inferred posterior represents the true distribution
- select the α -th credibility level of the inferred posterior
- compute the expected coverage probability C_{lpha} of the true distribution

Coverage Tests Practical computation

- for each quasar, order the MCMC samples by probability and choose the N highest ones, where $N = \alpha \cdot N_{\rm tot}$
- test if the true probability is contained inside this region
- for each credibility level α determine the fraction of quasars C_{α} for which this is the case

Ensemble inference

Timo Kist, Leiden Observatory, kist@strw.leidenuniv.nl

Constraints on the Distribution of Quasar Lifetimes

Kist, Hennawi+ 2023b (in prep.)

damping wing optical depth

$$\tau_{\rm DW}(\lambda_{\rm obs}) = \int_0^{R(z_{\rm QSO})} n_{\rm HI}^{\rm QSO}(R) \times \sigma_\alpha \left(\nu(R)\right) \, \mathrm{d}R$$

damping wing optical depth

damping wing optical depth

damping wing optical depth

$$(N_{\rm HI})^{w} = \int_{R_{\rm min}}^{R_{\rm max}} n_{\rm HI}^{\rm gal}(R) \times w(R) \, \mathrm{d}R$$

damping wing optical depth

$$(N_{\rm HI})^{w} = \int_{R_{\rm min}}^{R_{\rm max}} n_{\rm HI}^{\rm gal}(R) \times w(R) \, \mathrm{d}R$$

damping wing optical depth

$$(N_{\rm HI})^{w} = \int_{R_{\rm min}}^{R_{\rm max}} n_{\rm HI}^{\rm gal}(R) \times w(R) \, dR$$
weighting fur
$$w(R) \equiv \mathcal{N} \times (v - v)$$

damping wing optical depth

damping wing optical depth

$$\tau_{\rm DW}(v = v_{\rm T}) = \dots \simeq \frac{e^2}{m_e c} \frac{f_\alpha \gamma_\alpha}{\nu_\alpha} \frac{(c/H(z_{\rm QSO}) - R_{\rm T})^2}{(R_{\rm max} + R_{\rm T})(R_{\rm min} + R_{\rm T})} \times$$

Global IGM neutral fraction $\langle x_{\rm HI} \rangle$

Comparing the old and new labels

Local HI column density $N_{\rm HI}^{\Delta v^{-2}}$

Global IGM neutral fraction $\langle x_{\rm HI} \rangle$

Comparing the old and new labels

Local HI column density $N_{\rm HI}^{\Delta v^{-2}}$

Global IGM neutral fraction $\langle x_{\rm HI} \rangle$

distribution of transmission values at $v_{\rm T} = 2000 \, \rm km/s$

Local HI column density $N_{\rm HI}^{\Delta v^{-2}}$

 $\mathcal{V}_{\mathbf{T}}$

 v_{T}

	$x_{\rm HI} = 18.61$	$x_{\rm HI} = 20.51$	$x_{\rm HI} = 21.15$	$x_{\rm HI} = 21.49$	× _{HI} =
$\log t_Q = 8.0$	$N_{\rm skew} = 316$	$N_{\text{skew}} = 637$	$N_{\text{skew}} = 637$	$N_{\text{skew}} = 637$	$N_{\text{skew}} = 637$
	$\sigma = 0.000$	$\sigma = 0.008$	$\sigma = 0.013$	$\sigma = 0.013$	$\sigma = 0.013$
$\log t_{\rm Q} = 6.0$	$N_{\text{skew}} = 316$	$N_{\text{skew}} = 637$	$N_{\text{skew}} = 637$	$N_{\rm skew} = 637$	$N_{\rm skew} = 637$
	$\sigma = 0.000$	$\sigma = 0.003$	$\sigma = 0.008$	$\sigma = 0.019$	$\sigma = 0.019$
$\log t_Q = 4.0$	$N_{\rm skew} = 316$	$N_{\rm skew} = 637$	$N_{\text{skew}} = 637$	$N_{\text{skew}} = 637$	$N_{\rm skew} = 637$
	$\sigma = 0.000$	$\sigma = 0.003$	$\sigma = 0.004$	$\sigma = 0.007$	$\sigma = 0.035$
(0.00 0.25 0.50 0.75 1.0 t(v = 2000 km/s)	200.00 0.25 0.50 0.75 1.0 t(v = 2000 km/s)	00.00 0.25 0.50 0.75 1 t(v = 2000 km/s)	1.000.00 0.25 0.50 0.75 1.0 t(v = 2000 km/s)	$00.00 0.25 0 \\ t(v = 2)$

Global IGM neutral fraction $\langle x_{\rm HI} \rangle$

Local HI column density $N_{\rm HI}^{\Delta v^{-2}}$

Global IGM neutral fraction $\langle x_{\rm HI} \rangle$

Local HI column density $N_{\rm HI}^{\Delta v^{-2}}$

Global IGM neutral fraction $\langle x_{\rm HI} \rangle$

→ impacted by structure at < 0.5 pMpc

Local HI column density $N_{\rm HI}^{\Delta v^{-2}}$

 $P\left(N_{\rm HI}^{\Delta v^{-2}} | \langle x_{\rm HI} \rangle\right)$

Inference Tests

Full Coverage

Comparing Inference Precision

Global IGM neutral fraction $\langle x_{\rm HI} \rangle$