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Introduction

Positive geometries provide us with an excellent tool to study properties of scattering

amplitudes in various theories: N = 4 sYM, ABJM, ϕ3, etc

Some of these properties are difficult/impossible to capture using any other available

methods

In this talk I will focus on the singularity stratifications of tree-level amplitudes and

loop-level amplitude integrands for N = 4 sYM

→ for a parallel story for ABJM – see Jonah’s talk
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Why positive geometries?

Positive geometries encode the singularity structure of amplitudes

E.g. Associahedron for the ϕ3 adjoint scalar theory:

The boundary elements encode all possible factorisations of amplitudes

Works for scalar particles – what about gluons, etc. ?

→ More intricate structure of singularities
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From polytopes to Grassmannians

For theories with gluons: polytopes → curvy geometries: Graßmannians

Positive Graßmannian G+(k, n) provides a prototype example of curvy positive geometry

Boundaries of G+(k, n) labelled by on-shell diagrams:

1

2

3

4

5

6

Not all on-shell diagrams can be mapped to manifestly tree-level processes

Amplituhedra combine a particular collection of positive Grassmannian cells into a single

object encoding tree-level amplitudes
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Why momentum amplituhedron?

Amplituhedron An,k′ – defined in the momentum twistor space – encodes singularities of

the polygonal Wilson loops

ΦZ : G+(k − 2, n) → G(4, n)

C̃ z

[Arkani-Hamed,Trnka]

Momentum Amplituhedron Mn,k – defined in the spinor helicity space – captures all

singularities of the tree scattering amplitude

ΦΛ,Λ̃ : G+(k, n) → G(2, n) × G(2, n)

C λ λ̃

[Damgaard, Ferro, TL, Parisi]

Boundary stratification of Mn,k known for all multiplicities n and helicity sectors k
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Tree-level momentum amplituhedron – stratification

N = 4 sYM [Ferro, TL, Moerman]

hY ii + 1i = 0 = hY i � 1ii [Ỹ ii + 1] = 0 = [Ỹ i � 1i]

Figure 4. Plabic diagrams for codimension two boundaries of the momentum amplituhedron corre-
sponding to physical soft limits of an amplitude.

factorizations, and the corresponding plabic diagram will have the generic form depicted in

Fig. 5. In particular, a plabic graph for a generic boundary of Mn,k will consist of a number

of disjoint pieces, which can be of the following form:

• a black lollipop – corresponding to a helicity-preserving soft limit

• a white lollipop – corresponding to a helicity-reducing soft limit

• a single line – corresponding to a forward-limit

• a top cell, a collinear limit or a factorization channel for an amplitude An0,k0 with n0 < n

and k0  k. In particular, it can be any boundary of Mn0,k0 as long as it is given by a

connected diagram.

Figure 5. Plabic diagram for a generic boundary of the momentum amplituhedron.

We can now use the package amplituhedronBoundaries to find all such boundaries of all

dimensions from d = 0 to d = 2n � 4. For k = 2 and k = n � 2 the boundaries of Mn,2

and Mn,n�2 trivially agree with the boundary stratifications of the positive Grassmannians

G+(2, n) and G+(n� 2, n), respectively, which are identical to each other via the Grassman-

nian duality. For 2 < k < n� 2 the number of boundaries of a given dimension are organized

– 14 –

All possible tree-level physical processes

in N = 4 sYM

Labelled by Graßmannian forests
[Moerman, Williams]

ABJM [TL, Moerman, Stalknecht]

All possible tree-level physical processes

in ABJM

Labelled by orthogonal Graßmannian

forests
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Beyond tree level

Definition of the Loop Amplituhedron known for some time now [Arkani-Hamed,Trnka]

Φ̃Z : G+(k − 2, n) × G(2, n)l → G(4, n) × G(2, 4)l

C̃ Dl z (AB)l

Momentum space version – Loop Momentum Amplituhedron – introduced recently

[Ferro, TL]

Φ̃Λ,Λ̃ : G+(k, n) × G(2, n)l → G(2, n) × G(2, n) × GL(2)l

C Dl λ λ̃ ℓl

where

ℓ = λAλ̃B − λBλ̃A =

(∑
i

dAiλi

)(∑
j<i

dBi
⟨ij⟩
⟨AB⟩ λ̃j

)
−

(∑
i

dBiλi

)(∑
j<i

dAi
⟨ij⟩
⟨AB⟩ λ̃j

)

Can we classify all boundaries of this geometry?

→ a very interesting combinatorial problem!
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Two types of behaviour for positive geometries

Projection

Y = CZ

→ dimensions of the images are lower than the

dimensions of preimages

Blow-up

X1,3 =
σ2

σ3
(1 + σ3)

X1,4 =
1

1 − σ2
(2σ3 − σ2 − σ2σ3)

→ dimensions of the images are higher than

the dimensions of preimages

Loop momentum amplituhedron combines these two behaviours!
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Blow-ups for the loop momentum amplituhedron

ℓ =

(∑
i

dAiλi

)(∑
j<i

dBi
⟨ij⟩
⟨AB⟩ λ̃j

)
−

(∑
i

dBiλi

)(∑
j<i

dAi
⟨ij⟩
⟨AB⟩ λ̃j

)

The denominator ⟨AB⟩ can vanish for some lower-dimensional cells

(C,D) ∈ G+(k, n)× G(2, n)

→ one needs to approach the singular cells from all possible directions in the positive

Grassmannian

Blowing-up points in projective spaces is a well-understood problem in algebraic

geometry: take a singular point S and replace it by a copy of a projective space Pn

We need to blow up points in Grassmannian spaces

→ less understood
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Loop momentum amplituhedron – boundary stratification

Examples: three points, one loop

The geometry is 4-dimensional (2 tree

dimensions + 2 loop dimensions)

→ loop integration produces 0

Action of the map Φ̃Λ,Λ̃ producing

3-dimensional faces

�
{vanishing hiji}, `

�
Graph dimM

⇣
?, (12)h12i

(12)h12i+(13)h13ip1

⌘
3

⇣
{h13i}, h12i

h12i+y(13)
p1

⌘
2

⇣
{h12i}, (12)

(12)+yh13ip1

⌘
2

(?, 0) 2

(?, p1) 2

({h12i}, 0) 1

({h23i}, 0) 1

�
{vanishing hiji}, `

�
Graph dimM

({h13i}, p1) 1

({h12i}, p1) 1

({h13i}, 0) 1

({h12i , h13i}, 0) 0

({h12i , h23i}, 0) 0

({h13i , h23i}, 0) 0

Table 1: All boundaries of the codimension-1 facet of M3,2,1 defined by (23)D = 0.

Figure 2: A schematic depiction of a blow-up of the domain {3, 4, 5} ⇥ {4, 3, 5} followed by a
collapse. The resulting object is the image �

�
{3, 4, 5} ⇥ {4, 3, 5}

�
.

5

For 3-particle amplitudes, this result

generalizes to any loop order since loop

geometries are independent from each

other

Boundary poset
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Loop momentum amplituhedron - boundary stratification

Examples: four points, one loop

C =

1 α3 α2 0

0 0 1 α1


D =

1 β2 + β4 β2β3 0

0 1 β3 β1


dimC + dimD = 3 + 4 = 7

dim Φ̃(C,D) = 5

regular image

C =

1 α3 α2 0

0 0 1 α1


D =

1 0 0 0

0 1 0 0


dimC + dimD = 3 + 0 = 3

dim Φ̃(C,D) = 5

blow-up
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Loop momentum amplituhedron - boundary stratification

The complete boundary stratification for 4 points at one loop:

χ = 1 − 4 + 10 − 20 + 34 − 44 + 42 − 24 + 6 = 1
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Dual graph representation

The diagrams on the previous slides provide a generalization of the Graßmannian trees to

loops

Rigorous definition of diagrams – work in progress

Interesting observation: dual graphs

▶ The dual graphs are related to

triangulations/dissections of one-punctured

polygon (with possible deformations similar to

deformations of a moduli space of points on a

disk)

▶ Likely to lead to a better way of enumerating

the boundaries
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Generalizations

Beyond 4 points → MHV one loop

→ we believe (and have some evidence) that the geometry is “nice”

Beyond MHV → 6-points NMHV

→ the combinatorics of dual graphs easily generalizes to other helicity sectors

Beyond one loop → 2-loop 4 points

→ not so nice since already the domain itself is not a ball

→ there is some non-planar behaviour

All loop/all helicity combinatorics

→ stay tuned
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Conclusions and Outlook

Conclusions

We have started an exploration of the newly defined geometry relevant for loops directly in

the momentum space

Boundary stratification naturally labelled by a generalization of Grassmannian forests,

leading to an interesting combinatorial problem

Outlook

Can we understand better the all-loop “deepest cuts” of amplitudes from the geometry of

the loop momentum amplituhedron?

→ For the loop amplituhedron there are ambiguities in defining them. Can momentum

space fix this issue?

What about geometries for non-planar amplitudes?

→ Since the momentum in our construction is defined globally, one could access the

non-planar sector by changing the domain of the function ΦΛ,Λ̃
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