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Non-Linear Sigma Model: Lagrangian description

@ Theory of Goldstone Bosons arising from symmetry breaking
SU(N)xSU(N) — SU(N). Leading-order O(p?) Lagrangian:

2 s /2 k
_ nyr—1 _
L2 =—(0.U0°U™),  where U(x) kEZO:uk( = qs(g;)) .

Recursion Relations for One-Loop Goldstone Boson Amplitudes 1



Non-Linear Sigma Model: Lagrangian description

@ Theory of Goldstone Bosons arising from symmetry breaking
SU(N)xSU(N) — SU(N). Leading-order O(p?) Lagrangian:

2 00 .
Lo = %(@U&”U‘l), where U(x) = Zuk(ﬂcp(g;))k.
k=0

o Goldstone fields: ¢(z) = ¢%(z)t%, SU(N) generators: (t%t%) = Gy
— Consider scattering of massless adjoint scalars.
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Non-Linear Sigma Model: Lagrangian description

@ Theory of Goldstone Bosons arising from symmetry breaking
SU(N)xSU(N) — SU(N). Leading-order O(p?) Lagrangian:

F2

£2:T

(0, U0"UY),  where U(x) = Zuk(%ﬁcb(aj))k.

k=0

o Goldstone fields: ¢(z) = ¢%(z)t%, SU(N) generators: (t%t%) = Gy
— Consider scattering of massless adjoint scalars.

@ NLSM is a non-renormalizable theory in d = 4. Lagrangian gives rise
to even-point vertices, starting with four points:
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Tree-level amplitudes in the NLSM |

@ At tree-level decompose n-point amplitude A,, in terms of partial or
ordered amplitudes A,:

A=

O'ESn_l

(t914%(@) . $9o(m)
(2F2)n/2_1 A'n(plw"apa(n))
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Tree-level amplitudes in the NLSM |

@ At tree-level decompose n-point amplitude A,, in terms of partial or
ordered amplitudes A,:

A=

0ESH_1

(t914%(@) . $9o(m)
(2F2)n/2_1 An(pla---apa(n))

@ Example: partial amplitudes at 4- and 6-points:

1(s190+s S45+ S
A= 510+ 505, Ag— _5( 1,2 2,2)( 45+ 556) +s1a 4+ oye.
1,3

o Generally:
— A, are simple rational functions of kinematic invariants,

sij = (i + pit1 + - +pj)°
— A, are independent of Lagrangian parameters uy.
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Tree-level amplitudes in the NLSM ||

Identify two crucial properties satisfied by NLSM amplitudes:
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Tree-level amplitudes in the NLSM ||

Identify two crucial properties satisfied by NLSM amplitudes:

o (I) Consistent factorization: When intermediate states go on-shell,
P12 — 0, amplitudes factorize into lower-point amplitudes:

P2=0 1

A, A —AnLP—IQA

I ... factorization channel
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Tree-level amplitudes in the NLSM ||

Identify two crucial properties satisfied by NLSM amplitudes:

@ (I) Consistent factorization: When intermediate states go on-shell,
P12 — 0, amplitudes factorize into lower-point amplitudes:

P2=0 1

A, A —AnLP—IQA

I ... factorization channel

e (I1) Adler Zero: Amplitudes vanish when one of the external
momenta goes soft:

lim A, ~pr =0,

pr—0
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Tree-level amplitudes in the NLSM ||

Identify two crucial properties satisfied by NLSM amplitudes:

@ (I) Consistent factorization: When intermediate states go on-shell,
P12 — 0, amplitudes factorize into lower-point amplitudes:

P2=0 1

A, A —AnLP—IQA

I ... factorization channel

e (I1) Adler Zero: Amplitudes vanish when one of the external
momenta goes soft:

lim A, ~pr =0,

pr—0

@ (1) and (1) are sufficient to recursively compute the tree-level
S-Matrix. <> A,, are fixed uniquely by (1) and (II).
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One-loop amplitudes and integrands in the NLSM |

@ Analogous to tree-level, define ordered 1-loop amplitude

taltao'(2) t%(m> _
Ao — N3 @raz CP(PLs Do)+

O'ESn 1

where “+..." denotes terms suppressed by at least N 1.
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One-loop amplitudes and integrands in the NLSM |

@ Analogous to tree-level, define ordered 1-loop amplitude

taltao'(2) tac(n)> _
Ao — N3 @raz CP(PLs Do)+

O'ESn 1

where “+..." denotes terms suppressed by at least N 1.

o Define correspondlng planar integrand Z,)~°°P:

A, ) = [T,
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One-loop amplitudes and integrands in the NLSM |

@ Analogous to tree-level, define ordered 1-loop amplitude

taltao'(Q) tac(n)> _
A1 = NZ (2F?) o AP (D1 Do)

O'ESn 1

where “+..." denotes terms suppressed by at least N 1.

o Define correspondlng planar integrand Z,)~°°P:

A, ) = [T,

e Why integrands?
— Loop integrands are simple. Structurally similar to tree-level
amplitudes. Rational functions of {l, p;}.
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One-loop amplitudes and integrands in the NLSM |

@ Analogous to tree-level, define ordered 1-loop amplitude

taltao'(Q) tac(n)> _
AP =N Z (2F?) o AP (P1, - Do) +

O'ESn 1

where “+..." denotes terms suppressed by at least N 1.

o Define correspondlng planar integrand Z,)~°°P:

A, ) = [T,

e Why integrands?
— Loop integrands are simple. Structurally similar to tree-level
amplitudes. Rational functions of {l, p;}.

o Apply tree-level philosophy: Try to fix the integrand uniquely from
knowledge of poles (I) and Adler zero (I1).
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One-loop integrand at four points

@ Investigate simplest example: The 4-point integrand.
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One-loop integrand at four points

@ Investigate simplest example: The 4-point integrand.
@ At n = 4 compute Feynman diagrams:

7D _ D) 3
4 1 4

4 3 9 1
FD
n 42
= 16u; = 32us + —5 + 55 +oyc
12

o Numerators are: )7 = (dug — 1)(2812 + €3 + £343) + (8uz — 1)s23,

$(s12+ 03)(s12 + (353).

Ty2
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What about the Adler zero?

o |dea: use freedom in w3, u5 to impose Adler zero on ext. lines:

. !
lim IED(E,pj) ~pr =0,

pr—0
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What about the Adler zero?

o |dea: use freedom in w3, u5 to impose Adler zero on ext. lines:
. FD !
lim Zy (4, pj) ~ pr. = 0,

pr—0

— Impossible! Feynman integrand cannot satisfy Adler zero.
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What about the Adler zero?

o |dea: use freedom in w3, u5 to impose Adler zero on ext. lines:

. !
lim Z;P (¢, p;) ~ px = 0,

pr—0

— Impossible! Feynman integrand cannot satisfy Adler zero.

@ Make a more general Ansatz:

ans

p ny 1492
3" (oy) = — + + —+ cyc.
Y42 e,

with n§" = ays12 + @asag + a3l? + aully + aslly;, o free.
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What about the Adler zero?

o |dea: use freedom in w3, u5 to impose Adler zero on ext. lines:

. !
lim Z;P (¢, p;) ~ px = 0,

pr—0

— Impossible! Feynman integrand cannot satisfy Adler zero.

@ Make a more general Ansatz:
ans

(7)) Ny n42
I (i) = — + —5 + +oyc.
e T re,

with ni™ = ays12 + aases + 0436% + 0446%2 + a5€%23, o; free.

e Demanding Adler zero now gives a solution:
Ozo=2, a3=—1, Oz4=1, CY5=—1.

o This defines a two-parameter soft integrand I} = (a1, o).
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Uniqueness of Z7

o Two degrees of freedom a1, in soft integrand. How to fix them?

Recursion Relations for One-Loop Goldstone Boson Amplitudes 7



Uniqueness of Z7

o Two degrees of freedom a1, in soft integrand. How to fix them?
o Key object: B-function Bg (<> residue of Z7 at £2 = 0)

Cut[Z} (a1, 2)|2—g = —Bs (£, p1, D2, D3, Pa; 11, 2)

2 277,42

2 2
= (1812 + (v9S23 — el + 612 — 6123 + ET
12

@ Can verify: Bg is not the forward limit of the 6-point tree amplitude!
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Uniqueness of Z7

o Two degrees of freedom a1, in soft integrand. How to fix them?
o Key object: B-function Bg (<> residue of Z7 at £2 = 0)

Cut[Z} (a1, 2)|2—g = —Bs (£, p1, D2, D3, Pa; 11, 2)

2 277,42

2 2
= (1812 + (v9S23 — 51 + 512 — 5123 + ET
12

@ Can verify: Bg is not the forward limit of the 6-point tree amplitude!
But: Bg is still an on-shell function with tree-level structure.
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Uniqueness of Z7

o Two degrees of freedom a1, in soft integrand. How to fix them?
o Key object: B-function Bg (<> residue of Z7 at £2 = 0)

Cut[Z5 (a1, 2)]2—g = —Be (£, p1, p2, 3, pa; 1, 2

2 277,42

2 2
= (1812 + (v9S23 — 51 + 512 — 5123 + KT
12

@ Can verify: Bg is not the forward limit of the 6-point tree amplitude!
But: Bg is still an on-shell function with tree-level structure.
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More on the B-function Bg

@ By is specified (up to terms ~ a1, ) by factorization on £2, = 0:

and soft limits:

lim B6 = lim BG = 0.
p2—>0 p3—)0

The latter are necessary conditions implied by the Adler zero of Z3.

o Key observation: Bg can be fixed uniquely by requirement

limBséo = a1:—2, a2:0,
£—0
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More on the B-function Bg

@ By is specified (up to terms ~ a1, ) by factorization on £2, = 0:

and soft limits:

lim B6 = lim BG = 0.
p2—>0 p3—)0

The latter are necessary conditions implied by the Adler zero of Z3.

o Key observation: Bg can be fixed uniquely by requirement
limB(;éO = a1:—2, a2:0,
£—0

o This implies a unique soft integrand Z} = Z7(—2,0).



Stepping back and enjoying the view

@ Explicit expression for Bg

(s12 + @)(812 + 5%23)
7

Bg = 2519 + 02 — (35 + (395 —

and the corresponding soft integrand Z7

1 2519+ 03 =l + Boy n 1 (12 +63) (512 + £o3) +oye.

S _
=3 2 2 26,

@ At n = 4 points have succeeded in finding a unique integrand that
has (I) a consistent pole structure and (II) Adler zero.
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Stepping back and enjoying the view

@ Explicit expression for Bg

(s12 + @)(812 + 5%23)
7

Bg = 2519 + 02 — (35 + (395 —

and the corresponding soft integrand Z7

1 2519+ 03 =l + Boy n 1 (12 +63) (512 + £o3) +oye.

S _
=3 2 2 26,

@ At n = 4 points have succeeded in finding a unique integrand that
has (I) a consistent pole structure and (II) Adler zero.

— T} and Bg can be computed recursively!
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Wrap-Up

o Soft integrand Z} differs from Feynman integrand ZI'® only by terms
that vanish upon /-integration:
— I3 leads to known result for integrated amplitude Ai_IOOP!
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Wrap-Up

o Soft integrand Z} differs from Feynman integrand ZI'® only by terms
that vanish upon /-integration:
— I3 leads to known result for integrated amplitude Ai_loop!

@ Recursion for Bg and Z} requires no further input beyond the
4-point tree-level amplitude A4. Proceeds in two steps:

(1) Recursion of Bg. Input: Ay.
(2) Recursion of Z{.  Input: Bs.

Recursion Relations for One-Loop Goldstone Boson Amplitudes 10



Wrap-Up

o Soft integrand Z} differs from Feynman integrand ZI'® only by terms
that vanish upon /-integration:
— I3 leads to known result for integrated amplitude Ai_loop!

@ Recursion for Bg and Z} requires no further input beyond the
4-point tree-level amplitude A4. Proceeds in two steps:

(1) Recursion of Bg. Input: Ay.
(2) Recursion of Z{.  Input: Bs.

@ What can we say for higher points n > 47

— A unique 1-loop soft integrand Z3 satisfying (1) and (1) exists for
any number of points! This has been explicitly verified up to n = 8.
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What's next?

e Can this construction be extended to two loops and beyond?

@ Are there other exceptional EFTs for which a soft integrand can be
found?

@ Is there a Lagrangian that can directly compute the soft integrand?

Thank you!

Recursion Relations for One-Loop Goldstone Boson Amplitudes

11



Backups
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Double soft integrand

e Amplitudes in the NLSM are known to satisfy a recursion relation in
the limit when two external momenta become soft,

%i_lf(l) An(tpi, tpj, {pk}) = i jAn—2({pr}),

; o S5it1 (pir2(Pi—pit1)  Pi—1-(Pi—Pit1)
with ILij = 2 pite-(Pitpit1)  pi—1-(Pitpit1) )

@ Recall: previously we fixed a;=— 2 and a=0 in Irsl(oq,ag) using the
extended Adler zero of the B-functions, i.e. limy_,o B,,12 = 0.

o Alternatively we can fix the coefficients by imposing the double soft
limit for the integrand

|
W 7o (pi, , tpj, {6 pr}; s a2) = i T ({6, P} s a2),

yielding a1= — 2 and ay=1.
@ The resulting double-soft integrand ZDS can also be recursed to all
multiplicities. The only difference lies in the respective B-functions.
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Tree-level recursion for EFTs

@ ldea: use complex momentum shift:

DPi — f)i(z), zeC
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Tree-level recursion for EFTs

@ ldea: use complex momentum shift:
pi = pi(z), =z€C

e Amplitude becomes an analytic function of z, A, — A, (2).
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Tree-level recursion for EFTs

@ ldea: use complex momentum shift:
DPi — ﬁi(z), zeC

e Amplitude becomes an analytic function of z, A, — A, (2).

e Complex Analysis — A,,(z) can be uniquely determined from its poles
via residue theorem.
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Tree-level recursion for EFTs

@ ldea: use complex momentum shift:
pi = pi(z), =z€C

e Amplitude becomes an analytic function of z, A, — A, (2).

e Complex Analysis — A,,(z) can be uniquely determined from its poles
via residue theorem.

@ Physics input from (I) and (Il) crucial to obtain recursion relation:

z) dz A ,LL (2)Ang(2)
B 27{ P2(2)F,(2) 0

[t

This concludes the tree-level story. — Now move on to 1-loop!
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Tree-level recursion for EFTs |l

@ Use BCFW-like construction:

Recursion Relations for One-Loop Goldstone Boson Amplitudes

15



Tree-level recursion for EFTs |l

@ Use BCFW-like construction:

dz An(2)

AnT(O):i:O 2 1
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Tree-level recursion for EFTs |l

o Use BCFW-like construction:

An(0) %An(z)
ji:o z Fy(z)’

F(0)

for any function F,,(z) satisfying F},(0) = 1.
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Tree-level recursion for EFTs |l

@ Use BCFW-Ilike construction:

An(0) [ dz Au(2)
F,(0) _izo z Fn(z),

for any function F,(2) satisfying F,(0) = 1.
e We will choose F,(z) =[] (1 — a;z).
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Tree-level recursion for EFTs |l

@ Use BCFW-like construction:

A (0) _ %An(z)
F,(0) _izo z Fu(2)’

for any function F,,(z) satisfying F},(0) = 1.
e We will choose F,(z) =[], (1 — a;z).

e Since F,,(1/a;) = 0, we introduce additional poles at z = 1/a;:

A4 4/6.“ 4o
2 .
2"
2:0 M
e, Al
27

Recursion Relations for One-Loop Goldstone Boson Amplitudes
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Tree-level recursion for EFTs ||

B dz A (2)
An(0) = f;:o Z Fol2)

/*';/r-u +o
&
Vad M
A=y

g
e N4
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Tree-level recursion for EFTs ||

B dz A (2)
o= 7 Ful2)
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Tree-level recursion for EFTs Il

IR =

=0 < Fn(z)
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Tree-level recursion for EFTs Il

ZdeA 2)

I:I:i

> f 5

dz Ap(2)
(2)
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+ Poo(An)
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Tree-level recursion for EFTs Il

Z%dZA z fdzA j P4

An(z) 22 1

as 2z — Q.

@ Pole at infinity is absent: S (2) "~ zem T
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Tree-level recursion for EFTs ||

Zy{dzA 2)

@ Pole at infinity is absent: ﬁ((z)) ~Z

Recursion Relations for One-Loop Goldstone Boson Amplitudes

zz™

1

Zn—1

as z — 00.
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Tree-level recursion for EFTs IV

Zy{dzAj

Recursion Relations for One-Loop Goldstone Boson Amplitudes

n

=1

> TR

1/a;

n

z

z

(2)
(2)
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Tree-level recursion for EFTs IV

Zy{dzAz

o (I) Consistent factorization:

ZNZ?E\ - An, (Z)AnR (2)

An(2)
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Tree-level recursion for EFTs IV

Zy{dzAz

o (I) Consistent factorization:

ZNZ?E\ - An, (Z)AnR (2)

An(2)

o (I1) Adler zero:

[ e R

1/a;

Recursion Relations for One-Loop Goldstone Boson Amplitudes
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One-loop amplitudes and integrands in the NLSM ||

o Tree-level philosophy: Would like to determine the integrand from
knowledge of poles and Adler zero.
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One-loop amplitudes and integrands in the NLSM ||

o Tree-level philosophy: Would like to determine the integrand from
knowledge of poles and Adler zero.

@ Have to distinguish two types of poles in the integrand:

1
> tree-type poles ~ —, sij = (pi+ - +pj)?
i,j
| | 1 2 2
> loop-type poles ~ I G ,=U+pr+...p)°
1.
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One-loop amplitudes and integrands in the NLSM ||

o Tree-level philosophy: Would like to determine the integrand from
knowledge of poles and Adler zero.

@ Have to distinguish two types of poles in the integrand:

1
> tree-type poles ~ , sij=pi+--- +Pj)2,
1)
1
» loop-type poles ~ Z Goi=U+p+...p)>
Y 2

@ What should the pole structure of the integrand look like?

— Freedom to add terms that integrate to zero seemingly leads to a
lot of ambiguity in definition of the integrand!
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One-loop amplitudes and integrands in the NLSM ||

o Tree-level philosophy: Would like to determine the integrand from
knowledge of poles and Adler zero.

@ Have to distinguish two types of poles in the integrand:

1
> tree-type poles ~ , sij=pi+--- +Pj)2,
1)
1
» loop-type poles ~ Z Goi=U+p+...p)>
Y 2

@ What should the pole structure of the integrand look like?

— Freedom to add terms that integrate to zero seemingly leads to a
lot of ambiguity in definition of the integrand!

@ Investigate simplest example: The 4-point integrand.
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Poles and residues |

@ Let us formulate a wishlist for the poles and corresponding residues a
well-behaved integrand should have.

@ On tree-type poles, s; ; — 0, the integrand should factorize as

_ 54,7=0
Irlz, loop 7 r—— (Il loopAnR+AnLI1 100P>

Si,5

A i
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Poles and residues |l

@ On loop-type poles, 2 . — 0, the integrand should give the forward
limit of a higher-order tree amplitude

=0

2
Il—loop b _
n €2
1.4

Apnto(pr, - pie1, =il Pn)

[

W

1 w

@ How many of our wishes actually come true in the NLSM?
— Investigate simplest example: The 4-point integrand.
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What about the pole structure?

e 77" does not have any tree-type poles.
o Suffices to look at loop-type poles: Compute the cut at £? = 0:

CUt[ZE]KQZO = _B6(p1ap27p3ap47 _67 E)

9 2ny49

2 2
= 1512 + 2823 — 47 + {1y — {1p3 + 2
12

o The B-function Bg is an on-shell function with tree-level structure:

A 3 z 3

AN

L 4 19 -£€
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More on the B-function Bg

e By is specified (up to terms ~ a1, ) by factorization on #3, = 0:

@

(e

and soft limits:
lim Bg = lim Bg = 0.

p2—0 p3—0

e Furthermore, Bg can be fixed uniquely by demanding

lim Bg = (Oq + 2)312 — (12893 ; 0 = a3 =-2,a9=0,
£—0

in turn implying a unique soft integrand Z5 (a; = —2, a =0).

Recursion Relations for One-Loop Goldstone Boson Amplitudes
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The B-function B, 12

e At n points By12(p1,- .., Pn, —¥, £) corresponds to the single cut
(¢2 = 0) of the soft integrand Z5.

@ It is characterized as the unique function satisfying (I) consistent
factorization on poles Z%l =0,

B e%...izo\ AnL (£7p17 <o Disy _El...i)AnR(gl...hpi-i-h «e s Pny _5)
n+2 - 62 3
1.7

@ Residues at tree-type poles s; ; = 0 are a bit more involved but can
also be prescribed.

@ At the same time B,, 2 obeys (Il) the Adler zero (i =2,3,...,n—1):
sy Pz =0 i Basa =0

@ B9 is soft limit constructible from tree-level amplitudes and
lower-point B-functions. This has been verified up to Big.
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The soft integrand Z7

o The soft integrand Z5 has single cuts (i = 0,...,n — 1):

=0

e .
g —52—3n+2(p1, vy P =1y 01 Dit 1, -+ - D)
1.

@ On tree-type poles Z? factorizes (schematically) as expected

S Si,jzo
78

(IS Anp +An, I35 -

Sij

o Finally, Z satisfies the Adler zero on all external lines
: S
Ay Tl 2s) =0

° IS is soft limit constructible from the B-function B, 12 and lower
point tree-amps and soft integrands. This has been verified up to Igc’.
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Recursion for Bg and Z7

@ For Bg evaluate contour integral

_ ZB% ( L(z)AR(2) ) - Ai(oe)%z;lfw),

2035(2) F, (2)

o For 77} evaluate contour integral

dz IS > 6(2)
== TRG-XT s (Grame

=0

— What can we say for higher points? — Things work out!
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