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Non-Linear Sigma Model: Lagrangian description

Theory of Goldstone Bosons arising from symmetry breaking
SU(N)×SU(N) → SU(N). Leading-order O(p2) Lagrangian:

L2 =
F 2

4
⟨∂µU∂µU−1⟩, where U(x) =

∞∑
k=0

uk

( i√2

F
ϕ(x)

)k
.

Goldstone fields: ϕ(x) = ϕa(x)ta, SU(N) generators: ⟨tatb⟩ = δab.
→ Consider scattering of massless adjoint scalars.

NLSM is a non-renormalizable theory in d = 4. Lagrangian gives rise
to even-point vertices, starting with four points:

L2 ⊆


 .
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Tree-level amplitudes in the NLSM I

At tree-level decompose n-point amplitude An in terms of partial or
ordered amplitudes An:

An =
∑

σ∈Sn−1

⟨ta1taσ(2) . . . taσ(n)⟩
(2F 2)n/2−1

An(p1, . . . , pσ(n))

Example: partial amplitudes at 4- and 6-points:

A4 = s1,2 + s2,3, A6 = −1

2

(s1,2 + s2,3)(s4,5 + s5,6)

s1,3
+ s1,2 + cyc.

Generally:
→ An are simple rational functions of kinematic invariants,

si,j = (pi + pi+1 + · · ·+ pj)
2

→ An are independent of Lagrangian parameters uk.
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Tree-level amplitudes in the NLSM II

Identify two crucial properties satisfied by NLSM amplitudes:

(I) Consistent factorization: When intermediate states go on-shell,
P 2
I → 0, amplitudes factorize into lower-point amplitudes:

An
P 2
I =0

−−−→ −AnL

1

P 2
I

AnR , I . . . factorization channel

(II) Adler Zero: Amplitudes vanish when one of the external
momenta goes soft:

lim
pk→0

An ∼ pk = 0,

(I) and (II) are sufficient to recursively compute the tree-level
S-Matrix. ↔ An are fixed uniquely by (I) and (II).
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One-loop amplitudes and integrands in the NLSM I

Analogous to tree-level, define ordered 1-loop amplitude

A1−loop
n = N

∑
σ∈Sn−1

⟨ta1taσ(2) . . . taσ(n)⟩
(2F 2)n/2

A1−loop
n (p1, . . . , pσ(n)) + . . . ,

where “+. . . ” denotes terms suppressed by at least N−1.

Define corresponding planar integrand I1−loop
n :

A1−loop
n (p1, . . . , pn) =

∫
d4ℓ I1−loop

n (ℓ, p1, . . . , pn)

Why integrands?
→ Loop integrands are simple. Structurally similar to tree-level
amplitudes. Rational functions of {l, pi}.
Apply tree-level philosophy: Try to fix the integrand uniquely from
knowledge of poles (I) and Adler zero (II).
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One-loop integrand at four points

Investigate simplest example: The 4-point integrand.

At n = 4 compute Feynman diagrams:

= 16u23 − 32u5 +
nFD
4

ℓ2
+

n42

ℓ2ℓ212
+ cyc.

Numerators are: nFD
4 = (4u3 − 1)(2s12 + ℓ21 + ℓ2123) + (8u3 − 1)s23,

n42 =
1
2(s12 + ℓ21)(s12 + ℓ2123).
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What about the Adler zero?

Idea: use freedom in u3,u5 to impose Adler zero on ext. lines:

lim
pk→0

IFD
4 (ℓ, pj) ∼ pk

!
= 0,

→ Impossible! Feynman integrand cannot satisfy Adler zero.
Make a more general Ansatz:

Ians
4 (αi) =

α0

4
+

nans
4

ℓ2
+

n42

ℓ2ℓ212
+ cyc.

with nans
4 = α1s12 + α2s23 + α3ℓ

2
1 + α4ℓ

2
12 + α5ℓ

2
123, αi free.

Demanding Adler zero now gives a solution:

α0 = 2, α3 = −1, α4 = 1, α5 = −1.

This defines a two-parameter soft integrand IS
4 = IS

4 (α1, α2).
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Uniqueness of IS
4

Two degrees of freedom α1,α2 in soft integrand. How to fix them?

Key object: B-function B6 (↔ residue of IS
4 at ℓ2 = 0)

Cut[IS
4 (α1, α2)]ℓ2=0 ≡ −B6(ℓ, p1, p2, p3, p4;α1, α2)

= α1s12 + α2s23 − ℓ21 + ℓ212 − ℓ2123 +
2n42

ℓ212
.

Can verify: B6 is not the forward limit of the 6-point tree amplitude!
But: B6 is still an on-shell function with tree-level structure.

= −
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More on the B-function B6

B6 is specified (up to terms ∼ α1, α2) by factorization on ℓ212 = 0:

= −

and soft limits:
lim
p2→0

B6 = lim
p3→0

B6 = 0.

The latter are necessary conditions implied by the Adler zero of IS
4 .

Key observation: B6 can be fixed uniquely by requirement

lim
ℓ→0

B6
!
= 0 ⇒ α1=−2, α2 = 0,

This implies a unique soft integrand IS
4 = IS

4 (−2, 0).

Recursion Relations for One-Loop Goldstone Boson Amplitudes 8



More on the B-function B6

B6 is specified (up to terms ∼ α1, α2) by factorization on ℓ212 = 0:

= −

and soft limits:
lim
p2→0

B6 = lim
p3→0

B6 = 0.

The latter are necessary conditions implied by the Adler zero of IS
4 .

Key observation: B6 can be fixed uniquely by requirement

lim
ℓ→0

B6
!
= 0 ⇒ α1=−2, α2 = 0,

This implies a unique soft integrand IS
4 = IS

4 (−2, 0).

Recursion Relations for One-Loop Goldstone Boson Amplitudes 8



Stepping back and enjoying the view

Explicit expression for B6

B6 = 2s12 + ℓ21 − ℓ212 + ℓ2123 −
(s12 + ℓ21)(s12 + ℓ2123)

ℓ212
,

and the corresponding soft integrand IS
4

IS
4 =

1

2
− 2s12 + ℓ21 − ℓ212 + ℓ2123

ℓ2
+

1

2

(s12 + ℓ21)(s12 + ℓ2123)

ℓ2ℓ212
+ cyc.

At n = 4 points have succeeded in finding a unique integrand that
has (I) a consistent pole structure and (II) Adler zero.

→ IS
4 and B6 can be computed recursively!
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Wrap-Up

Soft integrand IS
4 differs from Feynman integrand IFD

4 only by terms
that vanish upon ℓ-integration:
→ IS

4 leads to known result for integrated amplitude A1−loop
4 !

Recursion for B6 and IS
4 requires no further input beyond the

4-point tree-level amplitude A4. Proceeds in two steps:
(1) Recursion of B6. Input: A4.
(2) Recursion of IS

4 . Input: B6.

What can we say for higher points n > 4?
→ A unique 1-loop soft integrand IS

n satisfying (I) and (II) exists for
any number of points! This has been explicitly verified up to n = 8.
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What’s next?

Can this construction be extended to two loops and beyond?

Are there other exceptional EFTs for which a soft integrand can be
found?

Is there a Lagrangian that can directly compute the soft integrand?

Thank you!
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Backups
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Double soft integrand
Amplitudes in the NLSM are known to satisfy a recursion relation in
the limit when two external momenta become soft,

lim
t→0

An(tpi, tpj , {pk}) = Πi,jAn−2({pk}),

with Πi,j =
δj,i+1

2

(
pi+2·(pi−pi+1)
pi+2·(pi+pi+1)

− pi−1·(pi−pi+1)
pi−1·(pi+pi+1)

)
.

Recall: previously we fixed α1=− 2 and α2=0 in IS
n(α1, α2) using the

extended Adler zero of the B-functions, i.e. limℓ→0Bn+2 = 0.
Alternatively we can fix the coefficients by imposing the double soft
limit for the integrand

lim
t→0

In(tpi, , tpj , {ℓ, pk};α1, α2)
!
= Πi,jIn−2({ℓ, pk};α1, α2),

yielding α1=− 2 and α2=1.
The resulting double-soft integrand IDS

n can also be recursed to all
multiplicities. The only difference lies in the respective B-functions.
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Tree-level recursion for EFTs

Idea: use complex momentum shift:

pi → p̂i(z), z ∈ C

Amplitude becomes an analytic function of z, An → An(z).
Complex Analysis → An(z) can be uniquely determined from its poles
via residue theorem.
Physics input from (I) and (II) crucial to obtain recursion relation:

An(0) =

∮
z=0
dz

An(z)

z
= · · · =

∑
I,±

∮
z±I

dz

z

AnL(z)AnR(z)

P̂ 2
I (z)Fn(z)

+ 0

This concludes the tree-level story. → Now move on to 1-loop!
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Tree-level recursion for EFTs II

Use BCFW-like construction:

An(0) =

∮
z=0

dz

z
An(z)
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Tree-level recursion for EFTs II

Use BCFW-like construction:

An(0)

Fn(0)
=

∮
z=0

dz

z

An(z)

Fn(z)
,

for any function Fn(z) satisfying Fn(0) = 1.
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=

∮
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An(z)

Fn(z)
,

for any function Fn(z) satisfying Fn(0) = 1.
We will choose Fn(z) =

∏n
i=1(1− aiz).
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Tree-level recursion for EFTs II

Use BCFW-like construction:

An(0)

Fn(0)
=

∮
z=0

dz

z

An(z)

Fn(z)
,

for any function Fn(z) satisfying Fn(0) = 1.
We will choose Fn(z) =

∏n
i=1(1− aiz).

Since Fn(1/ai) = 0, we introduce additional poles at z = 1/ai:
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Tree-level recursion for EFTs III

An(0) =

∮
z=0

dz

z

An(z)

Fn(z)
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Tree-level recursion for EFTs III

An(0) = −
∑
I,±

∮
z±I

dz

z

An(z)

Fn(z)
−

n∑
i=1

∮
1/ai

dz

z

An(z)

Fn(z)
+ P∞(An)
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Tree-level recursion for EFTs III

An(0) = −
∑
I,±

∮
z±I

dz

z

An(z)

Fn(z)
−

n∑
i=1

∮
1/ai

dz

z

An(z)

Fn(z)
+ P∞(An)

Pole at infinity is absent: An(z)
zFn(z)

∼ z2

zzn ∼ 1
zn−1 as z → ∞.
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Tree-level recursion for EFTs III
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∮
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Tree-level recursion for EFTs IV

An(0) = −
∑
I,±

∮
z±I

dz

z

An(z)

Fn(z)
−

n∑
i=1

∮
1/ai

dz

z

An(z)

Fn(z)

(I) Consistent factorization:

An(z)
z∼z±I−−−→ −AnL(z)AnR(z)

P̂ 2
I (z)

(II) Adler zero: ∮
1/ai

dz

z

An(z)

Fn(z)
= · · · ≃ An(1/ai) = 0.
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Tree-level recursion for EFTs IV

An(0) = −
∑
I,±

∮
z±I

dz
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Fn(z)
−
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i=1

∮
1/ai

dz

z

An(z)

Fn(z)

(I) Consistent factorization:

An(z)
z∼z±I−−−→ −AnL(z)AnR(z)

P̂ 2
I (z)

(II) Adler zero: ∮
1/ai

dz

z

An(z)

Fn(z)
= · · · ≃ An(1/ai) = 0.
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Tree-level recursion for EFTs IV

An(0) = −
∑
I,±

∮
z±I

dz

z

An(z)

Fn(z)
−

n∑
i=1

∮
1/ai

dz

z

An(z)

Fn(z)

(I) Consistent factorization:

An(z)
z∼z±I−−−→ −AnL(z)AnR(z)

P̂ 2
I (z)

(II) Adler zero: ∮
1/ai

dz

z

An(z)

Fn(z)
= · · · ≃ An(1/ai) = 0.
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One-loop amplitudes and integrands in the NLSM II

Tree-level philosophy: Would like to determine the integrand from
knowledge of poles and Adler zero.

Have to distinguish two types of poles in the integrand:

▶ tree-type poles ∼
1

si,j
, si,j = (pi + · · ·+ pj)

2,

▶ loop-type poles ∼
1

ℓ21...i
, ℓ21...i = (ℓ+ p1 + . . . pi)

2.

What should the pole structure of the integrand look like?

→ Freedom to add terms that integrate to zero seemingly leads to a
lot of ambiguity in definition of the integrand!

Investigate simplest example: The 4-point integrand.
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Tree-level philosophy: Would like to determine the integrand from
knowledge of poles and Adler zero.

Have to distinguish two types of poles in the integrand:

▶ tree-type poles ∼
1

si,j
, si,j = (pi + · · ·+ pj)

2,

▶ loop-type poles ∼
1

ℓ21...i
, ℓ21...i = (ℓ+ p1 + . . . pi)

2.

What should the pole structure of the integrand look like?

→ Freedom to add terms that integrate to zero seemingly leads to a
lot of ambiguity in definition of the integrand!

Investigate simplest example: The 4-point integrand.

Recursion Relations for One-Loop Goldstone Boson Amplitudes 18



Poles and residues I

Let us formulate a wishlist for the poles and corresponding residues a
well-behaved integrand should have.
On tree-type poles, si,j → 0, the integrand should factorize as

I1−loop
n

si,j=0
−−−−→ − 1

si,j

(
I1−loop
nL

AnR +AnLI
1−loop
nR

)
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Poles and residues II

On loop-type poles, ℓ21...i → 0, the integrand should give the forward
limit of a higher-order tree amplitude

I1−loop
n

ℓ21...i=0
−−−−→ − 1

ℓ21...i
An+2(p1, . . . , pi−1,−ℓ1...i, ℓ1...i, . . . , pn)

How many of our wishes actually come true in the NLSM?
→ Investigate simplest example: The 4-point integrand.
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What about the pole structure?

Ians
4 does not have any tree-type poles.

Suffices to look at loop-type poles: Compute the cut at ℓ2 = 0:

Cut[IS
4 ]ℓ2=0 ≡ −B6(p1, p2, p3, p4,−ℓ, ℓ)

= α1s12 + α2s23 − ℓ21 + ℓ212 − ℓ2123 +
2n42

ℓ212
.

The B-function B6 is an on-shell function with tree-level structure:
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More on the B-function B6

B6 is specified (up to terms ∼ α1, α2) by factorization on ℓ212 = 0:

and soft limits:
lim
p2→0

B6 = lim
p3→0

B6 = 0.

Furthermore, B6 can be fixed uniquely by demanding

lim
ℓ→0

B6 = −(α1 + 2)s12 − α2s23
!
= 0 ⇒ α1 = −2, α2 = 0,

in turn implying a unique soft integrand IS
4 (α1=−2, α2=0).
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The B-function Bn+2

At n points Bn+2(p1, . . . , pn,−ℓ, ℓ) corresponds to the single cut
(ℓ2 = 0) of the soft integrand IS

n.
It is characterized as the unique function satisfying (I) consistent
factorization on poles ℓ21...i = 0,

Bn+2
ℓ21...i=0
−−−−→ −AnL(ℓ, p1, . . ., pi,−ℓ1...i)AnR(ℓ1...i, pi+1, . . ., pn,−ℓ)

ℓ21...i
,

Residues at tree-type poles si,j = 0 are a bit more involved but can
also be prescribed.
At the same time Bn+2 obeys (II) the Adler zero (i = 2, 3, . . . , n− 1):

lim
pi→0

Bn+2 = 0, lim
ℓ→0

Bn+2 = 0.

Bn+2 is soft limit constructible from tree-level amplitudes and
lower-point B-functions. This has been verified up to B10.
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The soft integrand IS
n

The soft integrand IS
n has single cuts (i = 0, . . . , n− 1):

IS
n

ℓ21...i=0
−−−−→ − 1

ℓ21...i
Bn+2(p1, . . . , pi,−ℓ1...i, ℓ1...i, pi+1, . . . , pn).

On tree-type poles IS
n factorizes (schematically) as expected

IS
n

si,j=0
−−−−→ − 1

si,j

(
IS
nL

AnR +AnLI
S
nR

)
.

Finally, IS
n satisfies the Adler zero on all external lines

lim
pi→0

IS
n(ℓ, pj) = 0.

IS
n is soft limit constructible from the B-function Bn+2 and lower

point tree-amps and soft integrands. This has been verified up to IS
8 .
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Recursion for B6 and IS
4

For B6 evaluate contour integral

B6(z=0) =

∮
z=0

dz

z

B6(z)

FB6(z)
= . . .

= −
∑
zi

Res
z=zi

(
AL

4 (z)A
R
4 (z)

zℓ̂212(z)FB6(z)

)
− AL

4 (0)A
R
4 (0)

ℓ212
,

For IS
4 evaluate contour integral

IS
4 (z=0) =

∮
z=0

dz

z

IS
4 (z)

FI4(z)
=

3∑
i=0

∑
±

Res
z=z±i

(
B6(z)

z ℓ21...i(z)FI4(z)

)
,

→ What can we say for higher points? → Things work out!
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