Recursion Relations for One-Loop Goldstone Boson Amplitudes

Christoph Bartsch

Prague Spring Amplitudes 2023

15.05.2023

Based on: [2206.04694] CB, Karol Kampf, Jaroslav Trnka

Non-Linear Sigma Model: Lagrangian description

• Theory of Goldstone Bosons arising from symmetry breaking $SU(N) \times SU(N) \rightarrow SU(N)$. Leading-order $\mathcal{O}(p^2)$ Lagrangian:

$$\mathcal{L}_2 = \frac{F^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{-1} \rangle, \quad \text{ where } U(x) = \sum_{k=0}^{\infty} \frac{u_k}{F} \left(\frac{i\sqrt{2}}{F} \phi(x) \right)^k$$

Non-Linear Sigma Model: Lagrangian description

• Theory of Goldstone Bosons arising from symmetry breaking $SU(N) \times SU(N) \rightarrow SU(N)$. Leading-order $\mathcal{O}(p^2)$ Lagrangian:

$$\mathcal{L}_2 = \frac{F^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{-1} \rangle, \quad \text{ where } U(x) = \sum_{k=0}^{\infty} u_k \Big(\frac{i\sqrt{2}}{F} \phi(x) \Big)^k$$

• Goldstone fields: $\phi(x) = \phi^a(x)t^a$, SU(N) generators: $\langle t^a t^b \rangle = \delta_{ab}$. \rightarrow Consider scattering of massless adjoint scalars.

Non-Linear Sigma Model: Lagrangian description

• Theory of Goldstone Bosons arising from symmetry breaking $SU(N) \times SU(N) \rightarrow SU(N)$. Leading-order $\mathcal{O}(p^2)$ Lagrangian:

$$\mathcal{L}_2 = \frac{F^2}{4} \langle \partial_\mu U \partial^\mu U^{-1} \rangle, \quad \text{ where } U(x) = \sum_{k=0}^\infty u_k \Big(\frac{i\sqrt{2}}{F} \phi(x) \Big)^k \, .$$

- Goldstone fields: $\phi(x) = \phi^a(x)t^a$, SU(N) generators: $\langle t^a t^b \rangle = \delta_{ab}$. \rightarrow Consider scattering of massless adjoint scalars.
- NLSM is a non-renormalizable theory in d = 4. Lagrangian gives rise to even-point vertices, starting with four points:

$$\mathcal{L}_2 \subseteq \left\{ \underbrace{}, \underbrace{}, \underbrace{}, \underbrace{}, \ldots \right\}$$

• At tree-level decompose n-point amplitude A_n in terms of **partial** or **ordered** amplitudes A_n :

$$\mathcal{A}_n = \sum_{\sigma \in S_{n-1}} \frac{\langle t^{a_1} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}} \rangle}{(2F^2)^{n/2-1}} A_n(p_1, \dots, p_{\sigma(n)})$$

 At tree-level decompose n-point amplitude A_n in terms of partial or ordered amplitudes A_n:

$$\mathcal{A}_n = \sum_{\sigma \in S_{n-1}} \frac{\langle t^{a_1} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}} \rangle}{(2F^2)^{n/2-1}} A_n(p_1, \dots, p_{\sigma(n)})$$

• Example: partial amplitudes at 4- and 6-points:

$$A_4 = s_{1,2} + s_{2,3}, \quad A_6 = -rac{1}{2} rac{(s_{1,2} + s_{2,3})(s_{4,5} + s_{5,6})}{s_{1,3}} + s_{1,2} + {\sf cyc}.$$

Generally:

 $\rightarrow A_n$ are simple rational functions of kinematic invariants,

$$s_{i,j} = (p_i + p_{i+1} + \dots + p_j)^2$$

 $\rightarrow A_n$ are independent of Lagrangian parameters u_k .

Identify two crucial properties satisfied by NLSM amplitudes:

Identify two crucial properties satisfied by NLSM amplitudes:

• (1) Consistent factorization: When intermediate states go on-shell, $P_I^2 \rightarrow 0$, amplitudes factorize into lower-point amplitudes:

$$A_n \xrightarrow{P_I^2 = 0} -A_{n_L} \frac{1}{P_I^2} A_{n_R}, \qquad I \dots f_d$$

I . . . factorization channel

Identify two crucial properties satisfied by NLSM amplitudes:

• (I) Consistent factorization: When intermediate states go on-shell, $P_I^2 \rightarrow 0$, amplitudes factorize into lower-point amplitudes:

$$A_n \xrightarrow{P_I^2 = 0} -A_{n_L} \frac{1}{P_I^2} A_{n_R}, \qquad I \dots \text{factorization channel}$$

• (II) Adler Zero: Amplitudes vanish when one of the external momenta goes soft:

$$\lim_{p_k \to 0} A_n \sim p_k = 0,$$

Identify two crucial properties satisfied by NLSM amplitudes:

• (1) Consistent factorization: When intermediate states go on-shell, $P_I^2 \rightarrow 0$, amplitudes factorize into lower-point amplitudes:

$$A_n \xrightarrow{P_I^2 = 0} -A_{n_L} \frac{1}{P_I^2} A_{n_R}, \qquad I \dots \text{factorization channel}$$

• (II) Adler Zero: Amplitudes vanish when one of the external momenta goes soft:

$$\lim_{p_k \to 0} A_n \sim p_k = 0,$$

• (1) and (11) are sufficient to recursively compute the tree-level S-Matrix. $\leftrightarrow A_n$ are fixed uniquely by (1) and (11).

• Analogous to tree-level, define ordered 1-loop amplitude

$$\mathcal{A}_{n}^{1-\text{loop}} = N \sum_{\sigma \in S_{n-1}} \frac{\langle t^{a_{1}} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}} \rangle}{(2F^{2})^{n/2}} A_{n}^{1-\text{loop}}(p_{1}, \dots, p_{\sigma(n)}) + \dots,$$

where "+..." denotes terms suppressed by at least N^{-1} .

• Analogous to tree-level, define ordered 1-loop amplitude

$$\mathcal{A}_{n}^{1-\text{loop}} = N \sum_{\sigma \in S_{n-1}} \frac{\langle t^{a_{1}} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}} \rangle}{(2F^{2})^{n/2}} A_{n}^{1-\text{loop}}(p_{1}, \dots, p_{\sigma(n)}) + \dots,$$

where "+..." denotes terms suppressed by at least N^{-1} . • Define corresponding planar integrand $\mathcal{I}_n^{1-\text{loop}}$:

$$A_n^{1-\text{loop}}(p_1,\ldots,p_n) = \int d^4\ell \ \mathcal{I}_n^{1-\text{loop}}(\ell,p_1,\ldots,p_n)$$

• Analogous to tree-level, define ordered 1-loop amplitude

$$\mathcal{A}_{n}^{1-\text{loop}} = N \sum_{\sigma \in S_{n-1}} \frac{\langle t^{a_1} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}} \rangle}{(2F^2)^{n/2}} A_n^{1-\text{loop}}(p_1, \dots, p_{\sigma(n)}) + \dots,$$

where "+..." denotes terms suppressed by at least N^{-1} . • Define corresponding planar integrand $\mathcal{I}_n^{1-\text{loop}}$:

$$A_n^{1-\text{loop}}(p_1,\ldots,p_n) = \int d^4\ell \ \mathcal{I}_n^{1-\text{loop}}(\ell,p_1,\ldots,p_n)$$

• Why integrands?

 \rightarrow Loop integrands are simple. Structurally similar to tree-level amplitudes. Rational functions of $\{l, p_i\}$.

• Analogous to tree-level, define ordered 1-loop amplitude

$$\mathcal{A}_{n}^{1-\text{loop}} = N \sum_{\sigma \in S_{n-1}} \frac{\langle t^{a_1} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}} \rangle}{(2F^2)^{n/2}} A_n^{1-\text{loop}}(p_1, \dots, p_{\sigma(n)}) + \dots,$$

where "+..." denotes terms suppressed by at least N^{-1} . • Define corresponding planar integrand $\mathcal{I}_n^{1-\text{loop}}$:

$$A_n^{1-\text{loop}}(p_1,\ldots,p_n) = \int d^4\ell \ \mathcal{I}_n^{1-\text{loop}}(\ell,p_1,\ldots,p_n)$$

Why integrands?

 \rightarrow Loop integrands are simple. Structurally similar to tree-level amplitudes. Rational functions of $\{l, p_i\}$.

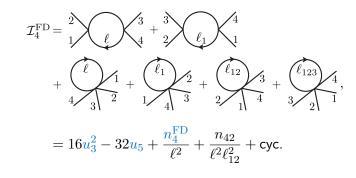
• Apply tree-level philosophy: Try to fix the integrand uniquely from knowledge of poles (I) and Adler zero (II).

One-loop integrand at four points

• Investigate simplest example: The 4-point integrand.

One-loop integrand at four points

- Investigate simplest example: The 4-point integrand.
- At n = 4 compute Feynman diagrams:



• Numerators are: $n_4^{\text{FD}} = (4u_3 - 1)(2s_{12} + \ell_1^2 + \ell_{123}^2) + (8u_3 - 1)s_{23},$ $n_{42} = \frac{1}{2}(s_{12} + \ell_1^2)(s_{12} + \ell_{123}^2).$

• Idea: use freedom in u_3, u_5 to impose Adler zero on ext. lines:

$$\lim_{p_k \to 0} \mathcal{I}_4^{\mathrm{FD}}(\ell, p_j) \sim p_k \stackrel{!}{=} 0,$$

• Idea: use freedom in u_3, u_5 to impose Adler zero on ext. lines:

$$\lim_{p_k \to 0} \mathcal{I}_4^{\mathrm{FD}}(\ell, p_j) \sim p_k \stackrel{!}{=} 0,$$

 \rightarrow Impossible! Feynman integrand cannot satisfy Adler zero.

• Idea: use freedom in u_3, u_5 to impose Adler zero on ext. lines:

$$\lim_{p_k \to 0} \mathcal{I}_4^{\mathrm{FD}}(\ell, p_j) \sim p_k \stackrel{!}{=} 0,$$

→ Impossible! Feynman integrand cannot satisfy Adler zero.
 Make a more general Ansatz:

$$\mathcal{I}_4^{\mathrm{ans}}(\alpha_i) = \frac{\alpha_0}{4} + \frac{n_4^{\mathrm{ans}}}{\ell^2} + \frac{n_{42}}{\ell^2 \ell_{12}^2} + \mathsf{cyc.}$$

with $n_4^{\text{ans}} = \alpha_1 s_{12} + \alpha_2 s_{23} + \alpha_3 \ell_1^2 + \alpha_4 \ell_{12}^2 + \alpha_5 \ell_{123}^2$, α_i free.

• Idea: use freedom in u_3, u_5 to impose Adler zero on ext. lines:

$$\lim_{p_k \to 0} \mathcal{I}_4^{\mathrm{FD}}(\ell, p_j) \sim p_k \stackrel{!}{=} 0,$$

→ Impossible! Feynman integrand cannot satisfy Adler zero.
 Make a more general Ansatz:

$$\mathcal{I}_4^{\mathrm{ans}}(lpha_i) = rac{lpha_0}{4} + rac{n_4^{\mathrm{ans}}}{\ell^2} + rac{n_{42}}{\ell^2 \ell_{12}^2} + \mathsf{cyc.}$$

with $n_4^{\text{ans}} = \alpha_1 s_{12} + \alpha_2 s_{23} + \alpha_3 \ell_1^2 + \alpha_4 \ell_{12}^2 + \alpha_5 \ell_{123}^2$, α_i free.

• Demanding Adler zero now gives a solution:

$$\alpha_0 = 2, \ \alpha_3 = -1, \ \alpha_4 = 1, \ \alpha_5 = -1.$$

• This defines a two-parameter soft integrand $\mathcal{I}_4^S = \mathcal{I}_4^S(\alpha_1, \alpha_2)$.

• Two degrees of freedom α_1, α_2 in soft integrand. How to fix them?

- Two degrees of freedom α_1, α_2 in soft integrand. How to fix them?
- Key object: B-function B_6 (\leftrightarrow residue of \mathcal{I}_4^S at $\ell^2 = 0$)

$$\operatorname{Cut}[\mathcal{I}_{4}^{\mathrm{S}}(\alpha_{1},\alpha_{2})]_{\ell^{2}=0} \equiv -B_{6}(\ell,p_{1},p_{2},p_{3},p_{4};\alpha_{1},\alpha_{2})$$
$$= \alpha_{1}s_{12} + \alpha_{2}s_{23} - \ell_{1}^{2} + \ell_{12}^{2} - \ell_{123}^{2} + \frac{2n_{42}}{\ell_{12}^{2}}.$$

• Can verify: B_6 is **not** the forward limit of the 6-point tree amplitude!

- Two degrees of freedom α_1, α_2 in soft integrand. How to fix them?
- Key object: B-function B_6 (\leftrightarrow residue of \mathcal{I}_4^S at $\ell^2 = 0$)

$$\operatorname{Cut}[\mathcal{I}_{4}^{\mathrm{S}}(\alpha_{1},\alpha_{2})]_{\ell^{2}=0} \equiv -B_{6}(\ell,p_{1},p_{2},p_{3},p_{4};\alpha_{1},\alpha_{2})$$
$$= \alpha_{1}s_{12} + \alpha_{2}s_{23} - \ell_{1}^{2} + \ell_{12}^{2} - \ell_{123}^{2} + \frac{2n_{42}}{\ell_{12}^{2}}.$$

• Can verify: B_6 is **not** the forward limit of the 6-point tree amplitude! **But:** B_6 is still an on-shell function with tree-level structure.

(

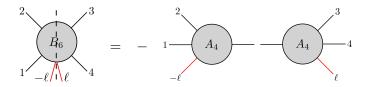
- Two degrees of freedom α_1, α_2 in soft integrand. How to fix them?
- Key object: B-function B_6 (\leftrightarrow residue of \mathcal{I}_4^S at $\ell^2 = 0$)

$$\operatorname{Cut}[\mathcal{I}_{4}^{\mathrm{S}}(\alpha_{1},\alpha_{2})]_{\ell^{2}=0} \equiv -B_{6}(\ell,p_{1},p_{2},p_{3},p_{4};\alpha_{1},\alpha_{2})$$
$$= \alpha_{1}s_{12} + \alpha_{2}s_{23} - \ell_{1}^{2} + \ell_{12}^{2} - \ell_{123}^{2} + \frac{2n_{42}}{\ell_{12}^{2}}.$$

• Can verify: B_6 is **not** the forward limit of the 6-point tree amplitude! **But:** B_6 is still an on-shell function with tree-level structure.

More on the B-function B_6

• B_6 is specified (up to terms $\sim \alpha_1$, α_2) by factorization on $\ell_{12}^2 = 0$:



and soft limits:

$$\lim_{p_2 \to 0} B_6 = \lim_{p_3 \to 0} B_6 = 0.$$

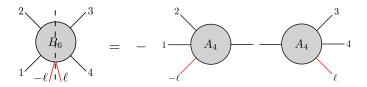
The latter are necessary conditions implied by the Adler zero of \mathcal{I}_4^S .

• Key observation: B_6 can be fixed uniquely by requirement

$$\lim_{\ell \to 0} B_6 \stackrel{!}{=} 0 \quad \Rightarrow \quad \alpha_1 = -2, \ \alpha_2 = 0,$$

More on the B-function B_6

• B_6 is specified (up to terms $\sim \alpha_1$, α_2) by factorization on $\ell_{12}^2 = 0$:



and soft limits:

$$\lim_{p_2 \to 0} B_6 = \lim_{p_3 \to 0} B_6 = 0.$$

The latter are necessary conditions implied by the Adler zero of \mathcal{I}_4^S .

• Key observation: B_6 can be fixed uniquely by requirement

$$\lim_{\ell \to 0} B_6 \stackrel{!}{=} 0 \quad \Rightarrow \quad \alpha_1 = -2, \ \alpha_2 = 0,$$

• This implies a **unique** soft integrand $\mathcal{I}_4^S = \mathcal{I}_4^S(-2,0)$.

Stepping back and enjoying the view

• Explicit expression for B_6

$$B_6 = 2s_{12} + \ell_1^2 - \ell_{12}^2 + \ell_{123}^2 - \frac{(s_{12} + \ell_1^2)(s_{12} + \ell_{123}^2)}{\ell_{12}^2},$$

and the corresponding soft integrand $\mathcal{I}_4^{\mathrm{S}}$

$$\mathcal{I}_4^{\rm S} = \frac{1}{2} - \frac{2s_{12} + \ell_1^2 - \ell_{12}^2 + \ell_{123}^2}{\ell^2} + \frac{1}{2} \frac{(s_{12} + \ell_1^2)(s_{12} + \ell_{123}^2)}{\ell^2 \ell_{12}^2} + \text{cyc.}$$

At n = 4 points have succeeded in finding a unique integrand that has (I) a consistent pole structure and (II) Adler zero.

Stepping back and enjoying the view

• Explicit expression for B_6

$$B_6 = 2s_{12} + \ell_1^2 - \ell_{12}^2 + \ell_{123}^2 - \frac{(s_{12} + \ell_1^2)(s_{12} + \ell_{123}^2)}{\ell_{12}^2},$$

and the corresponding soft integrand $\mathcal{I}_4^{\mathrm{S}}$

$$\mathcal{I}_4^{\rm S} = \frac{1}{2} - \frac{2s_{12} + \ell_1^2 - \ell_{12}^2 + \ell_{123}^2}{\ell^2} + \frac{1}{2} \frac{(s_{12} + \ell_1^2)(s_{12} + \ell_{123}^2)}{\ell^2 \ell_{12}^2} + \text{cyc.}$$

At n = 4 points have succeeded in finding a unique integrand that has (I) a consistent pole structure and (II) Adler zero.

$$ightarrow {\cal I}_4^{
m S}$$
 and B_6 can be computed recursively!

Wrap-Up

• Soft integrand \mathcal{I}_4^S differs from Feynman integrand \mathcal{I}_4^{FD} only by terms that vanish upon $\ell\text{-integration}$:

 $\rightarrow \mathcal{I}_4^{\mathrm{S}}$ leads to known result for integrated amplitude $A_4^{1-\mathrm{loop}}$!

Wrap-Up

• Soft integrand \mathcal{I}_4^S differs from Feynman integrand \mathcal{I}_4^{FD} only by terms that vanish upon $\ell\text{-integration}$:

 $\rightarrow \mathcal{I}_4^{\mathrm{S}}$ leads to known result for integrated amplitude $A_4^{1-\mathrm{loop}}$!

- Recursion for B_6 and \mathcal{I}_4^S requires **no further input** beyond the 4-point tree-level amplitude A_4 . Proceeds in two steps:
 - (1) Recursion of B_6 . Input: A_4 .
 - (2) Recursion of \mathcal{I}_4^S . Input: B_6 .

Wrap-Up

• Soft integrand \mathcal{I}_4^S differs from Feynman integrand \mathcal{I}_4^{FD} only by terms that vanish upon $\ell\text{-integration}$:

 $\rightarrow \mathcal{I}_4^{\mathrm{S}}$ leads to known result for integrated amplitude $A_4^{1-\mathrm{loop}}$!

- Recursion for B_6 and \mathcal{I}_4^S requires **no further input** beyond the 4-point tree-level amplitude A_4 . Proceeds in two steps:
 - (1) Recursion of B_6 . Input: A_4 .
 - (2) Recursion of \mathcal{I}_4^S . Input: B_6 .
- What can we say for higher points n > 4?
 → A unique 1-loop soft integrand I^S_n satisfying (I) and (II) exists for any number of points! This has been explicitly verified up to n = 8.

What's next?

- Can this construction be extended to two loops and beyond?
- Are there other exceptional EFTs for which a soft integrand can be found?
- Is there a Lagrangian that can directly compute the soft integrand?

Thank you!

Backups

Double soft integrand

• Amplitudes in the NLSM are known to satisfy a recursion relation in the limit when two external momenta become soft,

$$\lim_{t \to 0} A_n(tp_i, tp_j, \{p_k\}) = \prod_{i,j} A_{n-2}(\{p_k\}),$$

with
$$\Pi_{i,j} = \frac{\delta_{j,i+1}}{2} \left(\frac{p_{i+2} \cdot (p_i - p_{i+1})}{p_{i+2} \cdot (p_i + p_{i+1})} - \frac{p_{i-1} \cdot (p_i - p_{i+1})}{p_{i-1} \cdot (p_i + p_{i+1})} \right).$$

- Recall: previously we fixed $\alpha_1 = -2$ and $\alpha_2 = 0$ in $\mathcal{I}_n^S(\alpha_1, \alpha_2)$ using the extended Adler zero of the *B*-functions, i.e. $\lim_{\ell \to 0} B_{n+2} = 0$.
- Alternatively we can fix the coefficients by imposing the double soft limit for the integrand

$$\lim_{t \to 0} \mathcal{I}_n(tp_i, tp_j, \{\ell, p_k\}; \alpha_1, \alpha_2) \stackrel{!}{=} \Pi_{i,j} \mathcal{I}_{n-2}(\{\ell, p_k\}; \alpha_1, \alpha_2),$$

yielding $\alpha_1 = -2$ and $\alpha_2 = 1$.

• The resulting double-soft integrand \mathcal{I}_n^{DS} can also be recursed to all multiplicities. The only difference lies in the respective *B*-functions.

Tree-level recursion for EFTs

• Idea: use complex momentum shift:

$$p_i \to \hat{p}_i(z), \quad z \in \mathbb{C}$$

Tree-level recursion for EFTs

• Idea: use complex momentum shift:

$$p_i \to \hat{p}_i(z), \quad z \in \mathbb{C}$$

• Amplitude becomes an analytic function of z, $A_n \rightarrow A_n(z)$.

• Idea: use complex momentum shift:

$$p_i \to \hat{p}_i(z), \quad z \in \mathbb{C}$$

- Amplitude becomes an analytic function of z, $A_n \rightarrow A_n(z)$.
- Complex Analysis $\rightarrow A_n(z)$ can be uniquely determined from its poles via residue theorem.

Idea: use complex momentum shift:

$$p_i \to \hat{p}_i(z), \quad z \in \mathbb{C}$$

- Amplitude becomes an analytic function of z, $A_n \rightarrow A_n(z)$.
- Complex Analysis $\rightarrow A_n(z)$ can be uniquely determined from its poles via residue theorem.
- Physics input from (I) and (II) crucial to obtain recursion relation:

$$A_n(0) = \oint_{z=0} dz \ \frac{A_n(z)}{z} = \dots = \sum_{I,\pm} \oint_{z_I^{\pm}} \frac{dz}{z} \frac{A_{n_L}(z)A_{n_R}(z)}{\hat{P}_I^2(z)F_n(z)} + 0$$

This concludes the tree-level story. \rightarrow Now move on to 1-loop!

• Use BCFW-like construction:

$$A_n(0) = \oint_{z=0} \frac{dz}{z} A_n(z)$$

• Use BCFW-like construction:

$$\frac{A_n(0)}{1} = \oint_{z=0} \frac{dz}{z} \frac{A_n(z)}{1}$$

• Use BCFW-like construction:

$$\frac{A_n(0)}{F_n(0)} = \oint_{z=0} \frac{dz}{z} \frac{A_n(z)}{F_n(z)},$$

for any function $F_n(z)$ satisfying $F_n(0) = 1$.

Use BCFW-like construction:

$$\frac{A_n(0)}{F_n(0)} = \oint_{z=0} \frac{dz}{z} \frac{A_n(z)}{F_n(z)}$$

for any function $F_n(z)$ satisfying $F_n(0) = 1$.

• We will choose $F_n(z) = \prod_{i=1}^n (1 - a_i z)$.

Use BCFW-like construction:

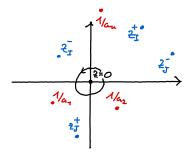
$$\frac{A_n(0)}{F_n(0)} = \oint_{z=0} \frac{dz}{z} \frac{A_n(z)}{F_n(z)},$$

for any function $F_n(z)$ satisfying $F_n(0) = 1$.

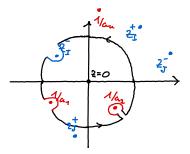
- We will choose $F_n(z) = \prod_{i=1}^n (1 a_i z)$.
- Since $F_n(1/a_i) = 0$, we introduce additional poles at $z = 1/a_i$:



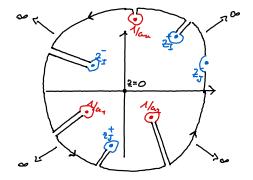
$$A_n(0) = \oint_{z=0} \frac{dz}{z} \frac{A_n(z)}{F_n(z)}$$



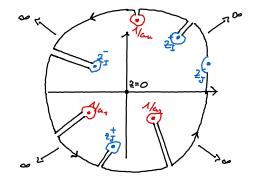
$$A_n(0) = \oint_{z=0} \frac{dz}{z} \frac{A_n(z)}{F_n(z)}$$



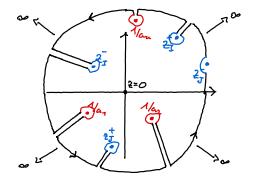
$$A_n(0) = \oint_{z=0} \frac{dz}{z} \frac{A_n(z)}{F_n(z)}$$



$$A_{n}(0) = -\sum_{I,\pm} \oint_{z_{I}^{\pm}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)} - \sum_{i=1}^{n} \oint_{1/a_{i}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)} + P_{\infty}(A_{n})$$



$$A_{n}(0) = -\sum_{I,\pm} \oint_{z_{I}^{\pm}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)} - \sum_{i=1}^{n} \oint_{1/a_{i}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)} + P_{\infty}(A_{n})$$



• Pole at infinity is absent: $\frac{A_n(z)}{zF_n(z)} \sim \frac{z^2}{zz^n} \sim \frac{1}{z^{n-1}}$ as $z \to \infty$.

$$A_{n}(0) = -\sum_{I,\pm} \oint_{z_{I}^{\pm}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)} - \sum_{i=1}^{n} \oint_{1/a_{i}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)}$$

• Pole at infinity is absent:
$$\frac{A_n(z)}{zF_n(z)} \sim \frac{z^2}{zz^n} \sim \frac{1}{z^{n-1}}$$
 as $z \to \infty$.

$$A_n(0) = -\sum_{I,\pm} \oint_{z_I^{\pm}} \frac{dz}{z} \frac{A_n(z)}{F_n(z)} - \sum_{i=1}^n \oint_{1/a_i} \frac{dz}{z} \frac{A_n(z)}{F_n(z)}$$

$$A_{n}(0) = -\sum_{I,\pm} \oint_{z_{I}^{\pm}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)} - \sum_{i=1}^{n} \oint_{1/a_{i}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)}$$

• (I) Consistent factorization:

$$A_n(z) \xrightarrow{z \sim z_I^{\pm}} -\frac{A_{n_L}(z)A_{n_R}(z)}{\hat{P}_I^2(z)}$$

$$A_{n}(0) = -\sum_{I,\pm} \oint_{z_{I}^{\pm}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)} - \sum_{i=1}^{n} \oint_{1/a_{i}} \frac{dz}{z} \frac{A_{n}(z)}{F_{n}(z)}$$

• (I) Consistent factorization:

$$A_n(z) \xrightarrow{z \sim z_I^{\pm}} -\frac{A_{n_L}(z)A_{n_R}(z)}{\hat{P}_I^2(z)}$$

• (II) Adler zero:

$$\oint_{1/a_i} \frac{dz}{z} \frac{A_n(z)}{F_n(z)} = \cdots \simeq A_n(1/a_i) = \mathbf{0}.$$

• **Tree-level philosophy**: Would like to determine the integrand from knowledge of poles and Adler zero.

- **Tree-level philosophy**: Would like to determine the integrand from knowledge of poles and Adler zero.
- Have to distinguish two types of poles in the integrand:

- **Tree-level philosophy**: Would like to determine the integrand from knowledge of poles and Adler zero.
- Have to distinguish two types of poles in the integrand:

• What should the pole structure of the integrand look like?

 \rightarrow Freedom to add terms that integrate to zero seemingly leads to a lot of ambiguity in definition of the integrand!

- **Tree-level philosophy**: Would like to determine the integrand from knowledge of poles and Adler zero.
- Have to distinguish two types of poles in the integrand:

• What should the pole structure of the integrand look like?

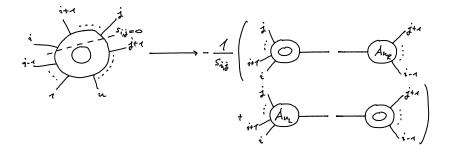
 \rightarrow Freedom to add terms that integrate to zero seemingly leads to a lot of ambiguity in definition of the integrand!

• Investigate simplest example: The 4-point integrand.

Poles and residues I

- Let us formulate a wishlist for the poles and corresponding residues a well-behaved integrand should have.
- On tree-type poles, $s_{i,j} \rightarrow 0$, the integrand should factorize as

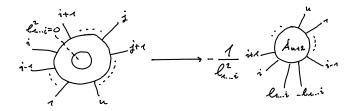
$$\mathcal{I}_n^{1-\text{loop}} \xrightarrow{s_{i,j}=0} -\frac{1}{s_{i,j}} \left(\mathcal{I}_{n_L}^{1-\text{loop}} A_{n_R} + A_{n_L} \mathcal{I}_{n_R}^{1-\text{loop}} \right)$$



Poles and residues II

• On loop-type poles, $\ell^2_{1...i} \to 0$, the integrand should give the forward limit of a higher-order tree amplitude

$$\mathcal{I}_{n}^{1-\text{loop}} \xrightarrow{\ell_{1...i}^{2}=0} -\frac{1}{\ell_{1...i}^{2}} A_{n+2}(p_{1},\ldots,p_{i-1},-\ell_{1...i},\ell_{1...i},\ell_{1...i},\ldots,p_{n})$$



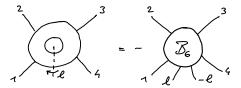
How many of our wishes actually come true in the NLSM?
 → Investigate simplest example: The 4-point integrand.

What about the pole structure?

- \mathcal{I}_4^{ans} does not have any tree-type poles.
- Suffices to look at loop-type poles: Compute the cut at $\ell^2 = 0$:

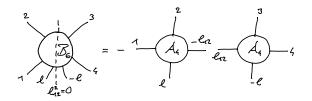
$$\operatorname{Cut}[\mathcal{I}_{4}^{S}]_{\ell^{2}=0} \equiv -B_{6}(p_{1}, p_{2}, p_{3}, p_{4}, -\ell, \ell)$$
$$= \alpha_{1}s_{12} + \alpha_{2}s_{23} - \ell_{1}^{2} + \ell_{12}^{2} - \ell_{123}^{2} + \frac{2n_{42}}{\ell_{12}^{2}}$$

• The **B-function** B₆ is an on-shell function with tree-level structure:



More on the B-function B_6

• B_6 is specified (up to terms $\sim \alpha_1$, α_2) by factorization on $\ell_{12}^2 = 0$:



and soft limits:

$$\lim_{p_2 \to 0} B_6 = \lim_{p_3 \to 0} B_6 = 0.$$

• Furthermore, B_6 can be *fixed uniquely* by demanding

$$\lim_{\ell \to 0} B_6 = -(\alpha_1 + 2)s_{12} - \alpha_2 s_{23} \stackrel{!}{=} 0 \quad \Rightarrow \quad \alpha_1 = -2, \alpha_2 = 0,$$

in turn implying a *unique* soft integrand $\mathcal{I}_4^S(\alpha_1 = -2, \alpha_2 = 0)$.

The *B*-function B_{n+2}

- At *n* points $B_{n+2}(p_1, \ldots, p_n, -\ell, \ell)$ corresponds to the single cut $(\ell^2 = 0)$ of the soft integrand $\mathcal{I}_n^{\mathrm{S}}$.
- It is characterized as the *unique* function satisfying (I) consistent factorization on poles $\ell_{1...i}^2 = 0$,

$$B_{n+2} \xrightarrow{\ell_{1...i}^2 = 0} - \frac{A_{n_L}(\ell, p_1, \dots, p_i, -\ell_{1...i}) A_{n_R}(\ell_{1...i}, p_{i+1}, \dots, p_n, -\ell)}{\ell_{1...i}^2},$$

- Residues at tree-type poles $s_{i,j} = 0$ are a bit more involved but can also be prescribed.
- At the same time B_{n+2} obeys (II) the Adler zero (i = 2, 3, ..., n-1):

$$\lim_{p_i \to 0} B_{n+2} = 0, \quad \lim_{\ell \to 0} B_{n+2} = 0.$$

• B_{n+2} is soft limit constructible from tree-level amplitudes and lower-point *B*-functions. This has been verified up to B_{10} .

The soft integrand $\mathcal{I}_n^{\mathrm{S}}$

• The soft integrand $\mathcal{I}_n^{\mathrm{S}}$ has single cuts $(i = 0, \dots, n-1)$:

$$\mathcal{I}_{n}^{S} \xrightarrow{\ell_{1...i}^{2}=0} -\frac{1}{\ell_{1...i}^{2}} B_{n+2}(p_{1},\ldots,p_{i},-\ell_{1...i},\ell_{1...i},p_{i+1},\ldots,p_{n}).$$

ullet On tree-type poles $\mathcal{I}_n^{\mathrm{S}}$ factorizes (schematically) as expected

$$\mathcal{I}_n^{\mathrm{S}} \xrightarrow{s_{i,j}=0} -\frac{1}{s_{i,j}} \left(\mathcal{I}_{n_L}^{\mathrm{S}} A_{n_R} + A_{n_L} \mathcal{I}_{n_R}^{\mathrm{S}} \right).$$

• Finally, $\mathcal{I}_n^{\mathrm{S}}$ satisfies the Adler zero on all external lines

$$\lim_{p_i \to 0} \mathcal{I}_n^{\mathrm{S}}(\ell, p_j) = 0.$$

• $\mathcal{I}_n^{\mathrm{S}}$ is soft limit constructible from the *B*-function B_{n+2} and lower point tree-amps and soft integrands. This has been verified up to $\mathcal{I}_8^{\mathrm{S}}$.

Recursion for B_6 and $\mathcal{I}_4^{\mathrm{S}}$

• For B_6 evaluate contour integral

$$B_{6}(z=0) = \oint_{z=0} \frac{dz}{z} \frac{B_{6}(z)}{F_{B_{6}}(z)} = \dots$$
$$= -\sum_{z_{i}} \operatorname{Res}_{z=z_{i}} \left(\frac{A_{4}^{L}(z)A_{4}^{R}(z)}{z\hat{\ell}_{12}^{2}(z)F_{B_{6}}(z)} \right) - \frac{A_{4}^{L}(0)A_{4}^{R}(0)}{\ell_{12}^{2}},$$

• For $\mathcal{I}_4^{\mathrm{S}}$ evaluate contour integral

$$\mathcal{I}_{4}^{S}(z=0) = \oint_{z=0} \frac{dz}{z} \frac{\mathcal{I}_{4}^{S}(z)}{F_{\mathcal{I}_{4}}(z)} = \sum_{i=0}^{3} \sum_{\pm} \underset{z=z_{i}^{\pm}}{\operatorname{Res}} \left(\frac{B_{6}(z)}{z \, \ell_{1...i}^{2}(z) F_{\mathcal{I}_{4}}(z)} \right),$$

 \rightarrow What can we say for *higher points*? \rightarrow Things work out!