Poles at Infinity in On-shell Diagrams Prague Spring Amplitudes Workshop

Taro V. Brown

Center for Quantum Mathematics and Physics (QMAP), UC Davis

Based on [2212.06840] with U. Öktem and J. Trnka

May 15, 2023

Motivation

- Unitarity of the S-matrix has been an immensely important concept in the study of scattering amplitudes.
- It does not predict what happens with tree-level amplitudes (or loop integrands) on UV poles when the external momenta (or loop momenta) go to infinity
- Is there a notion of unitarity at infinity?
- On-shell diagrams are natural objects to consider (gauge invariance, factorization manifest)

Motivation

• We will study on-shell diagrams in mainly ${\cal N} < 3$ SYM and show that there is a "factorization" property for diagrams with poles at infinity

Consider the fundamental three-point amplitudes for SYM

These obey constrained kinematics,

$$\tilde{\lambda}_1 \sim \tilde{\lambda}_2 \sim \tilde{\lambda}_3, \qquad \qquad \lambda_1 \sim \lambda_2 \sim \lambda_3$$
 (1)

- On-shell diagrams are build by gluing these fundamental three-point vertices together.
- All vertices satisfy momentum conservation.
- Every propagator is on-shell, $p^2 = 0$.

(2)

The same diagram represents both

- A term in the BCFW construction of the 6-point MHV tree-level amplitude.
- A maximal cut of 3-loop 6-point MHV amplitude

4 point amplitude

Simplest example

Gluing is done by integrating over cut conditions

$$\Omega = \int d^{4}\widetilde{\eta}_{1} \dots d^{4}\widetilde{\eta}_{4} \int \frac{d^{2}\lambda_{\ell_{1}}d^{2}\widetilde{\lambda}_{\ell_{1}}}{\operatorname{GL}(1)} \dots \frac{d^{2}\lambda_{\ell_{4}}d^{2}\widetilde{\lambda}_{\ell_{4}}}{\operatorname{GL}(1)} \times \left\{ A_{3}(1,\ell_{1},\ell_{4})A_{3}(2,\ell_{1},\ell_{2})A_{3}(3,\ell_{2},\ell_{3})A_{3}(4,\ell_{3},\ell_{4}) \right\} \qquad (4)$$

$$= \frac{\delta^{4}(P)\delta^{8}(Q)}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} \qquad (4)$$

 The following moves do not change the on shell function for the diagram – are identity moves

Consider momentum conservation:

$$\delta^4(P) = \delta^4(\lambda \cdot \tilde{\lambda}) = \delta^4(\lambda_1 \tilde{\lambda}_1 + \dots + \lambda_n \tilde{\lambda}_n) \tag{7}$$

- Introduce a k-plane in n-dimensions represented by a $(k \times n)$ -matrix
- This space is denoted by G(k, n), the *Grassmannian*.
- A point in this space is represented by a $(k \times n)$ matrix, which we refer to as the C-matrix.
- Linearized momentum conservation condition

$$\delta(C \cdot Z) = \delta^{((n-k)\times 2)}(C^{\perp} \cdot \lambda)\delta^{(k\times 2)}(C \cdot \widetilde{\lambda})\delta^{(k\times N)}(C \cdot \widetilde{\eta})$$

- The on-shell diagrams parameterize C in a certain way, by assigning an orientation and *edgevariables* to each diagram.
- Each entry in the C matrix is then given by a product of edge-variables

$$C_{\alpha a} = \sum_{\Gamma_{\alpha \to a}} \prod_{j} \alpha_{j} \tag{9}$$

 The on-shell function associated with an on-shell diagram in SYM theory is given by

$$\Omega = \int \prod_{i} \frac{d\alpha_{i}}{\alpha_{i}} \delta(C \cdot Z) \mathcal{J}^{N-4}, \qquad (10)$$

- Where the δ -functions let us determine the α 's.
- The Jacobian $\mathcal J$ is relevant for $\mathcal N \neq 4$ and is given by

$$\mathcal{J} = 1 + \sum_{i} f_{i} + \sum_{\substack{\text{disjoint} \\ \text{pairs } i,j}} f_{i} f_{j} + \sum_{\substack{\text{disjoint} \\ \text{pairs } i,j,k}} f_{i} f_{j} f_{k} + \cdots$$
(11)

with f_i is a clockwise-oriented product of edge-variables in closed cycles.

$$\mathcal{N}=3$$

Let us study the pole structure for $\mathcal{N}=3$:

The Jacobian from the internal cycle is $\mathcal{J} = 1 - \alpha_1 \alpha_2 \alpha_3 \alpha_4 = \frac{\langle 13 \rangle \langle 24 \rangle}{\langle 12 \rangle \langle 34 \rangle} \tag{12}$

The on-shell form is then given by

$$\Omega = \underbrace{\frac{\langle 24 \rangle \, \delta^4(P) \delta^6(Q)}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}}_{\Omega_{\rm bare}} \times \left(\frac{\langle 12 \rangle \langle 34 \rangle}{\langle 13 \rangle \langle 24 \rangle} \right)$$

- All other poles correspond to removing edges.
- Jacobian deletes poles that stem from edges that are non-removable
- Introduces pole at infinity $\langle 13 \rangle$.

What happens if we sit on the pole at infinity?

$$\operatorname{Res}(\Omega)_{\langle 13\rangle=0} = \frac{\delta^4(P)\delta^6(Q)\delta(\langle 13\rangle)}{\langle 23\rangle\langle 14\rangle} = \begin{array}{c} 3 \\ \\ \\ \end{array} = \begin{array}{c} 2 \\ \\ \end{array} = \begin{array}{c} \\ \\ \end{array} = \begin{array}{c} 2 \\ \\ \end{array}$$

Video showing schematics:

Other example

The on-shell function is then equal to

$$\Omega = \frac{\delta^4(P)\delta^6(Q)}{\langle 12\rangle\langle 45\rangle\langle 13\rangle\langle 35\rangle}$$

Blow up each loop individually

We know how the box blows up already

The pentagon on the other hand,

where the 4-point vertex can be further expanded as a chain of 3-point vertices.

Gluing back with the right box we get a pentagon diagram,

where

$$\Omega = \frac{\delta^4(P)\delta^6(Q)}{\langle 12\rangle\langle 45\rangle\langle 13\rangle\langle 35\rangle} \longrightarrow \Omega_{UV} = \frac{\delta^4(P)\delta^6(Q)\delta(\langle 13\rangle)}{\langle 12\rangle\langle 45\rangle\langle 35\rangle}$$
(21)

Video showing schematics:

This should not be surprising since the pentagon was really just a box

which we already knew how to do.

- Let us generalize this to higher points
- Sufficient in planar diagrams to treat n-gons
- These are secretly just boxes!

The residue is then simple to generalize

- These all are MHV diagram with only two black vertices.
- For N^kMHV diagrams we have k-2 black vertices.
- The expressions are a lot more complicated, but the result is similar
- Find result for n-gon then attach these to remaining diagram.

On the UV pole the on-shell diagrams behaves as

Larger diagrams

Take three-loop six-point NMHV leading singularity diagram

- Hexagon pole at $\langle 2|3+4|1]=0$
- Box pole at $\langle 3|5+6|1]$

Larger diagrams

 Contracting the Hexagon into a tree and then attaching to the remaining diagram

 Notice the change in orientation – this is a general feature since for larger diagrams this gives non planar diagram

Larger diagrams

- Consider a more intricate example the top dimensional cell of $G_{+}(3,6)$
- This can be obtained by attaching a BCFW bridge to the previous diagram: $\widehat{\widetilde{\lambda}}_1 = \widetilde{\lambda}_1 + \alpha_1 \widetilde{\lambda}_2$ and $\widehat{\lambda}_2 = \lambda_2 \alpha_1 \lambda_1$
- On shell conditions leave one parameter unfixed

Global Residue Theorem

For $\mathcal{N}=4$ the pole structure can be illustrated as follows

GRT

Where, through the Global Residue Theorem (GRT)

$$\sum_{i=1}^{6} \Omega_{i} = 0, \quad \text{with} \quad \Omega_{1} = \frac{\delta^{4}(P)\delta^{8}(\mathcal{Q})\,\delta([34]\widetilde{\eta}_{5} + [45]\widetilde{\eta}_{3} + [53]\widetilde{\eta}_{4})}{s_{345}[34][45]\langle 16\rangle\langle 12\rangle\langle 2|3 + 4|5]\langle 6|1 + 2|3]}$$

 This is directly linked to the six-point NMHV tree-level amplitude

$$\mathcal{A}_{6,3}^{\text{tree}} = \Omega_1 + \Omega_3 + \Omega_5 = -\Omega_2 - \Omega_4 - \Omega_6 \tag{28}$$

GRT

For our $\mathcal{N}=3$ example we have a new GRT, where we also explicitly see the non planar structure

 $\mathcal{N} \neq 4$

Video showing schematics:

Final points

- We call the procedure a non-planar twist
- ullet Planar diagram o non planar
- For $\mathcal{N} < 3$ the procedure is the same but one also has to act on the diagram with an *infinity operator* $\mathcal{O}^{\mathcal{N}}$.

Summary

- \bullet On-shell diagrams have UV poles for less $\mathcal{N} < 4$
- For planar diagrams this is achieved by a non-planar twist and infinity operator
- Doesn't work for non-planar, we leave it for future work, this is needed for $\mathcal{N}=8$ SUGRA

Thank you for your attention!

General ${\cal N}$

More general problem

UV pole of this is obtained by acting on the collapsed diagram with a differential operator $\mathcal O$

General ${\cal N}$

with

$$\mathcal{O}^{\mathcal{N}} = \frac{1}{(3-\mathcal{N})!} \left(\frac{\langle 2\ell_3 \rangle [2\ell_3]}{\langle 12 \rangle [1\ell_3]} \left\langle \lambda_2 \frac{d}{d\lambda_{\ell_3}} \right\rangle \right)^{3-\mathcal{N}}$$
(32)

General ${\cal N}$

The procedure is as follows

- Calculate the bare on-shell function of the lower-loop on-shell diagram obtained by diagrammatic rules
 - Crucially this relies on leaving the integration over an unfixed $\log \lambda_{\ell_3}$ such that one can act with derivative.
 - Also includes an integration over the internal leg ℓ_4 to eliminate the dependencies λ_{ℓ_3} from momentum conservation.
- ullet Take the appropriate number of derivatives with respect to λ_{ℓ_3}

$$\Omega_{\mathrm{UV}} = \mathcal{O}^{\mathcal{N}} \otimes \mathcal{O}_{2}$$

$$(33)$$

Non-Planar Diagrams

Can't blow up one loop at a time

