Poles at Infinity in On-shell Diagrams
Prague Spring Amplitudes Workshop

aro V. Brown
Center for Quantum Mathematics and Physics (QMAP), UC Davis

Based on [2212.06840] with U. Oktem and J. Trnka

May 15, 2023




Motivation

® Unitarity of the S-matrix has been an immensely important
concept in the study of scattering amplitudes.

® |t does not predict what happens with tree-level amplitudes
(or loop integrands) on UV poles when the external momenta
(or loop momenta) go to infinity

® |s there a notion of unitarity at infinity?

® On-shell diagrams are natural objects to consider (gauge
invariance, factorization manifest)




Motivation

* We will study on-shell diagrams in mainly N/ < 3 SYM and
show that there is a "factorization™ property for diagrams with
poles at infinity




On-shell diagrams

Consider the fundamental three-point amplitudes for SYM
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These obey constrained kinematics,

5\1 ~ 5\2 ~ 5\3, )\1 B )\2 i >\3 (1)




On-shell diagrams

® On-shell diagrams are build by gluing these fundamental
three-point vertices together.

® All vertices satisty momentum conservation.

e Every propagator is on-shell, p* = 0.
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On-shell diagrams

The same diagram represents both

® A term in the BCFW construction of the 6-point MHV
tree-level amplitude.

® A maximal cut of 3-loop 6-point MHV amplitude
3 1




On-shell diagrams
4 point amplitude

® Simplest example
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® Gluing is done by integrating over cut conditions
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On-shell diagrams

® The following moves do not change the on shell function for
the diagram — are identity moves
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Dual Formulation

® Consider momentum conservation:
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® |Introduce a k-plane in n-dimensions represented by a
(k x m)—matrix

® This space is denoted by G(k,n), the Grassmannian.

® A point in this space is represented by a (k x n) matrix, which
we refer to as the C-matrix.

® | inearized momentum conservation condition
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Dual Formulation

® The on-shell diagrams parameterize C' in a certain way, by
assigning an orientation and edgevariables to each diagram.

® Each entry in the C matrix is then given by a product of
edge-variables
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Dual Formulation

® The on-shell function associated with an on-shell diagram in
SYM theory is given by
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® \Where the d-functions let us determine the a's.
® The Jacobian J is relevant for N' # 4 and is given by
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with f; is a clockwise-oriented product of edge-variables in
closed cycles.




UV Pole Structure
N=38
Let us study the pole structure for N' = 3 :

The Jacobian from the internal cycle is (13)(24)
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The on-shell form is then given by
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UV Pole Structure

® All other poles correspond to removing edges.

® Jacobian deletes poles that stem from edges that are
non-removable

® Introduces pole at infinity (13).




UV Pole Structure

What happens if we sit on the pole at infinity?




UV Pole Structure

Video showing schematics:




UV Pole Structure

Other example
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The on-shell function is then equal to
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UV Pole Structure

Blow up each loop individually

We know how the box blows up already




UV Pole Structure

The pentagon on the other hand,
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where the 4-point vertex can be further expanded as a chain of
3-point vertices.




UV Pole Structure

Gluing back with the right box we get a pentagon diagram,
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UV Pole Structure

Video showing schematics:
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UV Pole Structure

his should not be surprising since the pentagon was really just a

box
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which we already knew how to do.




UV Pole Structure

® |et us generalize this to higher points
e Sufficient in planar diagrams to treat n-gons

® These are secretly just boxes!
i+ 1




UV Pole Structure

The residue is then simple to generalize

1+ 1




UV Pole Structure

® These all are MHV diagram with only two black vertices.
* For NKMHYV diagrams we have k& — 2 black vertices.

® The expressions are a lot more complicated, but the result is
similar

® Find result for n-gon then attach these to remaining diagram.




UV Pole Structure

On the UV pole the on-shell diagrams behaves as




Larger diagrams

Take three-loop six-point NMHV leading singularity diagram

_ 6°(Q)d*(P)8([56]71+[61]75+ [15]76)

(34)(2]3+4|1)(3|5+6|1|(2|14+6|5]|56]

® Hexagon pole at (2|3+4|1] =0
® Box pole at (3|5+6|1]




Larger diagrams

® (Contracting the Hexagon into a tree and then attaching to
the remaining diagram

® Notice the change in orientation — this is a general feature
since for larger diagrams this gives non planar diagram




Larger diagrams

® Consider a more intricate example — the top dimensional cell
of G_|_(3 6)

® This can be obtamed by attaching a BCFW bridge to the
previous diagram: )\1 )\1 T ()11)\2 and )\2 = Ao — 1 \1

® On shell conditions leave one parameter unfixed
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Global Residue Theorem

For N/ = 4 the pole structure can be illustrated as follows




GRT

® Where, through the Global Residue Theorem (GRT)
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® This is directly linked to the six-point NMHYV tree-level
amplitude

ASSE = Q) + Q3+ Q5 = —Qy — Qg — Qg (28)




GRT

For our N' = 3 example we have a new GRT, where we also
explicitly see the non planar structure

(29)




Dual Formulation
N # 4

Video showing schematics:
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Final points

® We call the procedure a non-planar twist
® Planar diagram — non planar

® For N < 3 the procedure is the same but one also has to act
on the diagram with an infinity operator OV .




Summary

® On-shell diagrams have UV poles for less N < 4

® For planar diagrams this is achieved by a non-planar twist and
infinity operator

® Doesn't work for non-planar, we leave it for future work, this
is needed for N' = 8 SUGRA




Thank you for your attention!




General \V

More general problem

(30)

UV pole of this is obtained by acting on the collapsed diagram
with a differential operator O




General NV
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General \V

The procedure is as follows

® (Calculate the bare on-shell function of the lower-loop on-shell
diagram obtained by diagrammatic rules

® Crucially this relies on leaving the integration over an unfixed
leg Ay, such that one can act with derivative.

® Also includes an integration over the internal leg /4 to
eliminate the dependencies Ay, from momentum conservation.

® Take the appropriate number of derivatives with respect to Ay,
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Non-Planar Diagrams

® Can't blow up one loop at a time




