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Motivation

▶ Modern amplitudes methods have been very useful for
Effective Field Theories (EFT) (Soft Recursion Relations,
color-kinematics, etc)

▶ Soft bootstrap has been used to explore the space of EFTs
satisfying low energy theorems

▶ If we want to understand corrections to NLSM as an EFT,
how can modern methods help?

▶ BCJ imposes novel constraints



Pions and NLSM

▶ Chiral perturbation theory is the low energy EFT of QCD

SU(N)L × SU(N)R/SU(N)L ≡ SU(N) −→ Goldstone Modes

▶ Leading order term with two derivatives is a non-linear sigma
model (NLSM)

L = F 2
π

4 tr
[
(DµU)(DµU)†

]
+ . . .

▶ Pion amplitudes vanish in the soft limit due to the
Lagrangian’s shift symmetry

▶ LχPT admits a perturbative expansion as suppressed high
derivative corrections



Soft Bootstrap for NLSM

▶ SU(N) NLSM tree amplitudes can be written as

ANLSM
n =

∑
σ

Tr(T a1T a2 . . .T an) ANLSM
n (1, 2, . . ., n)

▶ Poles are at P2
ij = (pi+. . .+pj−1)2 = 0

An
P2=0−−−→ An1

1
P2 An−n1+2 .

▶ At 4-point

O(p2m) : A4 ∈
{
um−a(sa + ta)

}



Soft Bootstrap for NLSM

▶ m independent 4-point amplitudes at order O(p2m)
▶ Soft behavior is automatically satisfied at 4-point, first

non-trivial constraints at 6-point

Aans
6 =

A4 A4

O(p2a) O(p2b) + O(p2m)

contact

.

▶ Must satisfy a + b = m + 1



Soft Bootstrap for NLSM

▶ For example at O(p6)

O(p2) O(p6) + O(p4) O(p4) + O(p6)



Soft Bootstrap for NLSM

▶ For the leading order m = 1, we get a unique solution

ANLSM
6 =

(s13s46
s123

+s26s35
s345

+s15s24
s234

)
−1

2
∑
cycl

s13 .

▶ At general O(p2m) order we get multiple solutions
▶ Two important features to note

- Constraints are placed at fixed O(p2m) order
- Constraints are placed at fixed multiplicity



BCJ as a Constraint

▶ At 4-point Bern-Carrasco-Johansson (BCJ) relations are given
by

sA4(1, 2, 3, 4) − uA4(1, 3, 2, 4) = 0 .

▶ Impose cyclicity and Kleiss-Kuijf (KK) relations

A4(1, 2, 3, 4) + A4(1, 3, 4, 2) + A4(1, 3, 2, 4) = 0

▶ From these constraints any 4-point amplitude satisfying BCJ
can be expressed as

ABCJ
4 =

∑
m,a,b

α
(2m)
a,b

(
uF a,b

2m−4

)
.

F (2m)
a,b ∈

{
(stu)a(s2 + t2 + u2)b

}
for 3a + 2b = m.



BCJ as a Constraint

▶ Going up to 6-point we have

s12A6(123456) + (s12+s23)A6(132456)
− (s25+s26)A6(134256) − s26A6(134526) = 0

▶ Repeat the soft bootstrap procedure, ie fix O(p2m) order and
write a local ansatz

▶ No 4-point O(p4) amplitudes that satisfy BCJ, let’s take the
O(p6) example



BCJ as a Constraint

▶ We have only one factorization diagram at this order

O(p2) O(p6)

1

2

3 4

5

6

P
= A(2)

4 (123) 1
P2 A(6)

4 (456)]

A(2)
4 (123) ≡ A(2)

4 (1, 2, 3, P) = s13,

A(6)
4 (456) ≡ A(6)

4 (4, 5, 6, −P) = α
(6)
0,1s46(s2

45+s2
46+s2

56),

▶ Imposing BCJ fixes the contact term and we get a unique
solution



BCJ as a Constraint

▶ Novel feature at O(p10) order-multiple factorization diagrams

Aans
6 = O(p2) O(p10) + O(p6) O(p6) + O(p10) .

▶ Imposing BCJ gives two solutions, the second one fixes the
coefficient for the contact term

ABCJ,2
6 = O(p6) O(p6) + O(p10) .



BCJ as a Constraint

▶ Coefficient for the O(p10) contact term related to O(p6) 4-pt
term coefficient by BCJ

▶ In Lagrangian language this relates c2 to c2
1 in

L = c1(∂6ϕ4) + c2(∂10ϕ6) + . . .

▶ Differs from property 1 of the soft bootstrap, we get
constraints between different derivative orders



BCJ vs Soft Bootstrap

Table: Soft and BCJ bootstrap results at 4-point

O(p#) 2 4 6 8 10 12 14 16 18
Soft amplitudes 1 2 3 4 5 6 7 8 9
BCJ amplitudes 1 0 1 1 1 1 2 1 2

Table: Soft and BCJ bootstrap results at 6-point

O(p#) 2 4 6 8 10 12 14 16 18
Soft amplitudes 1 2 10 29 83 207 461 945 1819
- Contact terms 0 0 5 22 70 191 434 915 1772
BCJ amplitudes 1 0 1 1 2 4 7 16 36
- Contact terms 0 0 0 0 0 2 4 13 31



BCJ Constraints for 4-Point

▶ At O(p14) level we start getting relations between 4-point
coefficients of different derivative order, differs from property
2 of soft limits

Aans
6 = O(p2) O(p14)

2 terms

+ O(p6) O(p10)

+ O(p8) O(p8) + O(p14) .

(0)



BCJ Constraints for 4-Point

▶ The ansatz can be written as

Aans
6 = α

(14)
2,0 (. . .) + α

(14)
0,3 (. . .) + α

(6)
0,1α

(10)
0,2 (. . .)

+ (α(8)
1,0)2(. . .) +

∑
k

αct
k (. . .)

▶ Imposing BCJ gives 3 solutions instead of 4, giving the
relation

α
(14)
2,0 − 8

3α
(14)
0,3 − 8

3α
(6)
0,1α

(10)
0,2 − 1

2(α(8)
1,0)2 = 0



BCJ Constraints for 4-Point

▶ Similar constraints for O(p18)

Aans
6 = O(p2) O(p18) + O(p6) O(p14) (1)

+ O(p8) O(p12) + O(p10) O(p10) + O(p18)

α
(18)
2,1 − 8α

(18)
0,4 + α

(6)
0,1α

(14)
2,0 − 8α

(6)
0,1α

(14)
0,3

− α
(8)
1,0α

(12)
1,1 − 4(α(10)

0,2 )2 = 0



Outlook

▶ BCJ puts novel constraints on higher derivative scalar
amplitudes

▶ Different derivative orders related to each other, unlike soft
limits

▶ Imposing BCJ at higher point will constrain lower point
amplitudes even more

▶ We know Z-theory satisfies BCJ at every order, is it the only
such theory?

▶ Is there a high derivative BCJ Lagrangian?
▶ Possible geometric structure underlying BCJ relations?



The End

Thanks for listening!



Z-Theory

▶ Open string amplitude can be written as

Astring = SYM ⊗ Z -theory (2)

▶ Z-theory is the part containing the disk integral


