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Grassmannian cluster algebras

Let k ≤ n ∈ Z≥1 and

Gr(k , n) = {k dimensional subspaces of Cn}
= {k × n full rank matrices}/row operations.

A Plücker coordinate Pi1,...,ik ∈ C[Gr(k, n)] (i1 < · · · < ik): for
a k × n matrix x = (xij)k×n, Pi1,...,ik (x) is the minor of x with
1st, . . ., kth rows and i1th, . . ., ikth columns.

Dual canonical basis of C[Gr(k , n)] is (CDFL2019)

{ch(T ) : T ∈ SSYT(k , [n])},

where ch(T ) is a polynomial in Plücker coordinates and is
given by an explicit formula in [CDFL2019], SSYT(k, [n]) is
the set of rectangular tableaux with k rows and with entries in
[n].
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Prime elements in the dual canonical basis

ch(T ) is called prime if ch(T ) 6= ch(T ′)ch(T ′′) for any
non-trivial tableaux T ′,T ′′.

C[Gr(2, 5)] has 5 (non-frozen) prime elements
p13, p24, p14, p25, p35. They are all cluster variables.

For general C[Gr(k , n)], all cluster variables are prime but
there are more prime elements than cluster variables.
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Prime elements in the dual canonical basis

How to classify all prime elements in the dual canonical basis
of C[Gr(k , n)]? This is a difficult question and it is only known
in the case of k = 2. An element ch(T ) in the dual canonical
basis of C[Gr(2, n)] is prime if and only if T is a one-column
tableau, i.e. ch(T ) is a Plücker coordinate (Chari-Pressley).

We will use Newton polytopes to construct prime elements in
the dual canonical basis of C[Gr(k , n)]. We conjecture that
we can obtain all prime elements.
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Prime elements in the dual canonical basis

Let T (0)
k,n be the set of all one-column tableaux which are

obtained by cyclic shifts of the one-column tableau with
entries 1, 2, . . . , k − 1, k + 1.

For d ≥ 0, we define recursively

N
(d)
k,n = Newt

 ∏
T∈T (d)

k,n

chT (xi ,j)

 ,

where T (d+1)
k,n is the set of all tableaux which correspond to

facets of N
(d)
k,n, chT (xi ,j) is the polynomial obtained by

evaluating ch(T ) on the web matrix (Speyer and Williams
2005).
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From facets of Newton polytopes to tableaux

The Newton polytope N
(d)
k,n can be described using certain

equations and inequalities in its H-representation.

Let F be a facet of the Newton polytope N
(d)
k,n. The normal

vector vF of F is the coefficient vector in one of the
inequalities in the H-representation of N

(d)
k,n.

If there is an entry of the vector vF which is negative, then we
add some vectors which are coefficients of the equations in

the H-representation of N
(d)
k,n to vF such that the resulting

vector v ′F all have non-negative entries.
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From facets of Newton polytopes to tableaux

The vector v ′F can be written as v ′F =
∑

i ,j ci ,jei ,j for some
positive integers ci ,j , where ei ,j is the standard basis of
R(k−1)×(n−k).

We send the vector ei ,j to a fundamental tableau Ti ,j which is
defined to be the one-column tableau with entries
[j , j + k] \ {i + j}.
The tableau TF corresponding to F is obtained from
∪i ,jT

∪ci,j
i ,j by removing all frozen factors (if any).
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Example: Gr(3, 6)

The web matrix for Gr(3, 6) is

M =

1 0 0 x1,1x2,1 x1,1x2,12 + x1,2x2,2 x1,1x2,123 + x1,2x2,23 + x1,3x2,3
0 1 0 −x2,1 −x2,12 −x2,123
0 0 1 1 1 1

 ,
where we abbreviate for example x2,23 = x2,2 + x2,3.

Evaluating all Plücker coordinates on M and take their
product, we obtain a polynomial p. The Newton polytope

N
(1)
3,6 is the Newton polytope defined by the vertices given by

the exponents of monomials of p.
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Example: Gr(3, 6)

The H-representation of N
(1)
3,6 is given by

(0, 0, 0, 1, 1, 1) · x − 20 = 0, (1, 1, 1, 0, 0, 0) · x − 10 = 0, (0, 1, 1, 0, 0, 0) · x − 4 ≥ 0,

(0, 0, 1, 0, 0, 0) · x − 1 ≥ 0, (0, 0, 0, 0, 1, 1) · x − 11 ≥ 0, (0, 0, 0, 0, 0, 1) · x − 4 ≥ 0,

(0, 0, 1, 1, 0, 0) · x − 6 ≥ 0, (0, 0, 0, 0, 1, 0) · x − 4 ≥ 0, (0, 0, 0, 1, 0, 0) · x − 4 ≥ 0,

(1, 0, 0, 0, 0, 0) · x − 1 ≥ 0, (1, 0, 0, 0, 1, 0) · x − 6 ≥ 0, (1, 1, 0, 0, 1, 1) · x − 16 ≥ 0,

(1, 1, 0, 0, 0, 0) · x − 4 ≥ 0, (0, 0, 0, 1, 1, 0) · x − 11 ≥ 0, (0, 1, 0, 0, 0, 0) · x − 1 ≥ 0,

(1, 0, 0, 0, 1, 1) · x − 14 ≥ 0, (0, 1, 0, 0, 0, 1) · x − 6 ≥ 0, (1, 1, 0, 0, 0, 1) · x − 11 ≥ 0,

where (0, 0, 0, 1, 1, 1) · x is the inner product of the vectors
(0, 0, 0, 1, 1, 1) and x .
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Example: Gr(3, 6)

For the facet F with the normal vector vF = (0, 1, 1, 0, 0, 0) in
the first line of the above, we have that vF = e1,2 + e1,3. The

generalized roots e1,2, e1,3 corresponds to tableaux
2

4

5

,
3

5

6

respectively. Removing the frozen factor
3

4

5

in
2

4

5

∪
3

5

6

=
2 3

4 5

5 6

,

we obtain TF =
2

5

6

.
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Example: Gr(3, 6)

generalized roots facets, hyperplanes tableaux modules

γ124 = α2,1 (0, 0, 0, 1, 0, 0) [124] Y1,−1
γ125 = α2,1 + α2,2 (0, 0, 0, 1, 1, 0) [125] Y1,−3Y1,−1

γ134 = α1,1 (1, 0, 0, 0, 0, 0) [134] Y2,0

γ135 = α1,1 + α2,2 (1, 0, 0, 0, 1, 0) [135] Y1,−3Y2,0

γ136 = α1,1 + α2,2 + α2,3 (1, 0, 0, 0, 1, 1) [136] Y1,−5Y1,−3Y2,0

γ145 = α1,1 + α1,2 (1, 1, 0, 0, 0, 0) [145] Y2,−2Y2,0

γ146 = α1,1 + α1,2 + α2,3 (1, 1, 0, 0, 0, 1) [146] Y1,−5Y2,−2Y2,0

γ235 = α2,2 (0, 0, 0, 0, 1, 0) [235] Y1,−3
γ236 = α2,2 + α2,3 (0, 0, 0, 0, 1, 1) [236] Y1,−5Y1,−3

γ245 = α1,2 (0, 1, 0, 0, 0, 0) [245] Y2,−2
γ246 = α1,2 + α2,3 (0, 1, 0, 0, 0, 1) [246] Y1,−5Y2,−2
γ256 = α1,2 + α1,3 (0, 1, 1, 0, 0, 0) [256] Y2,−4Y2,−2

γ346 = α2,3 (0, 0, 0, 0, 0, 1) [346] Y1,−5
γ356 = α1,3 (0, 0, 1, 0, 0, 0) [356] Y2,−4

γ124 + γ356 = α1,3 + α2,1 (0, 0, 1, 1, 0, 0) [[124],[356]] Y2,−4Y1,−1
γ145 + γ236 = α1,1 + α1,2 + α2,2 + α2,3 (1, 1, 0, 0, 1, 1) [[135],[246]] Y1,−5Y2,−2Y1,−3Y2,0

γ126 = α2,1 + α2,2 + α2,3 (0, 0, 0, 1, 1, 1) [126] Y1,−5Y1,−3Y1,−1
γ156 = α1,1 + α1,2 + α1,3 (1, 1, 1, 0, 0, 0) [156] Y2,−4Y2,−2Y2,0
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Quantum affine algebras

The results in Grassmannian case correspond to
representations of Uq(ŝlk).

The results in Grassmannian case can be generalized to
general quantum affine algebras.
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Grassmannian string integrals

Arkani-Hamed, He, and Lam 2019 introduced Grassmannian string
integrals:

I = (α′)a
∫
Ra
>0

∏
i ,j

dxij
xij

∏
J

p−α
′cJ

J ,

where the second product runs over all Plücker coordinates pJ ,
α′, cJ are some parameters, a = (k − 1)(n − k − 1), xij ’s are
variables used in the web matrix (Speyer and Williams 2005).
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Grassmannian string integrals

In [Early-L. 2023], we generalize the above integral: for every
d ≥ 1, we define

I
(d)
k,n = (α′)a

∫
Ra
>0

∏
(i ,j)

dxi ,j
xi ,j

(∏
T

ch−α
′cT

T (xi ,j)

)
.

where the second product is over all tableaux T such that the face

FT corresponding to T is a facet of the Newton polytope N
(d−1)
k,n ,

chT is given in [CDFL2019].
We expect that these integrals have applications in physics.
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u-variables and u-equations

Another application to physics is about u-variables and
u-equations.

u-variables are certain rational fractions in Plücker coordinates
originally defined by physicists Koba-Nielsen in 1969 in the
case of Gr(2, n).

Arkani-Hamed, Frost, Plamondon, Salvatori, and Thomas
have obtained general formulas for u-variables for categories
of representations of quivers with relations.

In [Early-L. 2023], we give a general formula for u-variables in
the case of Gr(k , n).
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Grassmannian cluster categories

Jensen, King, and Su 2016 gave an additive categorification of
C[Gr(k , n)] using Cohen-Macaulay modules.

Denote by CM(Bk,n) the category of Cohen-Macaulay
Bk,n-modules. The category CM(Bk,n) has an
Auslander-Reiten quiver.
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Cluster variables, rigid indecomposable modules, real prime
modules, tableaux

Cluster variables in C[Gr(k , n)] are in bijection with reachable
rigid indecomposable modules in CM(Bk,n) [Jensen, King, Su
2016].

Cluster variables in C[Gr(k , n)] are in bijection with reachable
prime real modules in Cslk` [Hernandez-Leclerc 2010, Qin 2017,
Kang-Kashiwara-Kim-Oh 2018, Kashiwara-Kim-Oh-Park
2019].

Cluster variables in C[Gr(k , n)] are in bijection with reachable
prime real tableaux in SSYT(k , [n]) [Chang-Duan-Fraser-L.
2020].

We replace the modules at the vertices of the
Auslander-Reiten quiver by the corresponding tableaux.
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Auslander-Reiten quiver in the case of Gr(3, 6)
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Figure: The Auslander-Reiten quiver for CM(B3,6) with vertices labelled
by tableaux.
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u-variables in the case of Gr(3, 6)

The u-variables for Gr(3, 6) are

u126 =
p136
p126

, u345 =
p346
p345

, u125 =
p126p135
p125p136

, u136 =
ch135,246

p136p245
, u245 =

p345p246
p245p346

,

u346 =
ch124,356

p346p125
, u124,356 =

p125p134p356
ch124,356p135

, u134 =
p135p234
p134p235

, u135 =
p136p145p235
p135ch135,246

,

u235 =
ch135,246

p235p146
, u135,246 =

p146p245p236
ch135,246p246

, u146 =
p246p156
p146p256

, u246 =
p346p256p124
p246ch124,356

,

u256 =
ch124,356

p256p134
, u234 =

p235
p234

, u156 =
p256
p156

, u356 =
p135p456
p356p145

, u145 =
ch135,246

p145p236
,

u236 =
p246p123
p236p124

, u124 =
ch124,356

p124p356
, u456 =

p145
p456

, u123 =
p124
p123

,

where we use chT1,...,Tr to denote chT , and Ti ’s are columns of T .
Here ch124,356 = p124p356 − p123p456, and
ch135,246 = p145p236 − p123p456.
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A general formula for u-variables

For every mesh

T1

��
S //

��

HH

... // S ′

Tr

GG

in the Auslander-Reiten quiver of CM(Bk,n), we define the
corresponding u-variable as

uS =

∏r
i=1 chTi

chSchS ′
.
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u-equations

We conjecture that there exist unique integers aT ,T ′ such that

uT +
∏

T ′∈PSSYTk,n

u
aT ,T ′

T ′ = 1,

for all T ∈ PSSYTk,n, PSSYTk,n is the set of all
(non-frozen) prime tableaux in SSYT(k, [n]).

These equations are called u-equations.

The following is an example of u-equation in the case of
Gr(3, 6):

u124,356 + u135u136u145u146u235u236u245u246u
2
135,246 = 1.
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Thank you!
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