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Work with Hadleigh Frost & Omer Gurdogan
Based on Alday, Maldacena, Gaiotto, Sever, Vieira, 2007-10.

Determine new geometric structures on space of kinematic
data for super Yang-Mills amplitudes at strong coupling.



Amplitudes, Wilson loops & Strings in AdS

Planar N = 4 dualities at strong coupling [Alday, Maldacena, Gaiotto, Sever & Vieira 2007-10]

Conjecture (aday-vaidacenal: 3-way correspondence

A)‘ = <W’Y>)\ - D[Z C Ad85 X 85] e_isslring .
)

A = A(ky, ..., ky) amplitude,
e ~ = polygon of ordered null momenta,

W.,, = Wilson loop around ~

2
A = t'Hooft coupling, Résfs =V

Ay = (W,) proved for loop-integrand

[M., Skinner, Caron-Huot, 2010].

e Strong coupling as o/ — 0, A\ — oc: v C 0AdS= M.

W) ~ e Vihmas/FE

e solved with Y-system ~» good qualitative agreement!



SketCh Of |ntegrab|||ty approaCh [Alday, Maldacena, Gaiotto, Sever, Vieira]

¢ Exploit integrability of Minimal surfaces in AdS.

e Equation reduces to generalized Sinh-Gordon in AdS3.

¢ Reformulate as Zy-invariant SU(2) Hitchin system in AdSs,
or Zg-invariant SU(4) in AdSs.

* Wilson loop boundary conditions gives worldsheet CP"
with irregular singularity at co depending on kinematic data.

e Stokes sectors at oo correspond to edges of polygon.

e Solution is encoded in Ys(¢)-functions, holomorphic in
spectral parameter ¢ using Lax pair.

e Area can be computed directly from Y

Question: Moduli-spaces of regular Hitchin systems admit

Hyperkahler structures (and hence twistor spaces).
Is there some version of this story here?



Space of kinematic data for minimal surfaces in AdS;

Lemma
Null polygon v ¢ M'*1 has 2n sides with parameter space

K= Ma:n X M(—;n:An_s XAn_3.

Here Mo n = An_3 = {X; € RP'|X; # X;}/Mobius, dim. = n— 3.
Proof:
Let (X*, X™) be coords on M'*1 s.t.

ds® = 2dX* @ dX~.
Label edges of v alternately by
constant X and X~
gives coords {X;"},{X"},i=1,....n.
Conf. group=Mobius™ x Mobius™,

quotient gives result.O
These are cluster varieties.




Cluster coordinates on K

Define cluster coordinates on each /\/l(jfn factor by:

e x;,j = cross ratio «» diagonal (/, j) of
n-gon

Xij = (Xi — X)) (Xi—1 — Xji1) 5 o

Need clusters {xs},s=1,...,n—3. 3 8
Clusters <+ triangulation of n-gon.
e E.g., zig-zag:

{xs} == {xslxai-1 = x=ii, x2i = X—i-1,i} -
¢ Flipping a diagonal <+ mutations.

Hereon, we use zig-zag and will see sets of mutations for
rotation of n-gon.



Y-system
Integrability ~» computation of Areas_ by complex analysis.
Introduce spectral parameter ¢ € CP' and functions
Vs = Vs(xi,x7,¢) : KxCP' = C, s=1,...,n—3,

subject to:

O V()=xs, Vs()=xs
® ); analytic in ¢ with branches at ( = 0,00 & cut: ( € R™.
® As ( — 0,00, 31(Zs, Zs) functions of (x/, x7) s.t.

@ For Y 1(¢) = Y(e™¢) analytic continuation as ¢ — ¢/™(:
Va1 Voks1 = (14 Varga)(1 + Vak)
Voo = (14 Vo 1)1+ V3" 4).

Branching of Vs < set of cluster mutations given by rotating
zig-zag triangulation by 27 /n.



Output of Y-system

e 3! solution Ys(x;, x7, ¢) to Y-system (from TBA).
e Determines Zs(x;, x; ) too with

Zs ~logxd —ilogxs, as xi — 0,00
* Remainder function (regularized area) obtained as

_ . 5 d¢
+ — el — E -
R(x;,x,) = —le®ZZs d /C/ZselR— 2 Zslog(1+Ys(())-

Gives procedure to construct amplitude via complex analysis,
but what does it mean geometrically?



The Y-system defines a twistor space

Definition LY
Define the twistor space 7, for K, to be
:
% — lCn % C]P)‘I C e CP
= A,7 3 XA, 53X CP'. 1

] K3 (x3:xs)

Smooth coords: (x$, xs ,¢) or (Z, Z, ¢). 51

* 7, is a complex-manifold: (Vs, ¢) give n — 2 local

holomorphic coords.

¢ Holomorphic projection p : .7, — CP', projecting to ¢.

The fibres of p admit holomorphic symplectic structures
Y(¢) = €®dy, Ndys, ys=logls, PR2RET = 11
Non-degenerate only for n odd.
The y, are invariant under S' symmetry generated by
0 =5 0

Z) — i —.
ICaC l ra-—- Zr raZr



From twistor space to pseudo-hyperkahler structure

Key device: ¥(¢) = €*dy; A dys is global on CP'; no branching.
e Recall (Vs(1),Vs(i)) = (x&, x5 ) S0 setting x5 = log x&:

T(1) =) €®a; Adxd,  X()=> €®dx, Adxs.

Y (¢) has double poles at { = 0, as ys has single poles.
But ¥(—¢) = ¥£(¢) ~ notermsin ¢, ¢~ 1.
So Laurent expansion is:

_(B+1)? (G PN (G
()= gz )~ P )+ g
for some (-independent closed 2-form Q.
Rank n — 3 of £(¢) = implies Q = J™dx;" A dxg with
_ PJ(xg . xg)
- axfoxg

& JPIS ey = €95

Plebanski: J = Kahler scalar for pseudo-hyperkahler structure.



The remainder function R(x;, x;)

Lemma (Alday, Maldacena)
R(x7,x; ) = Hamiltonian of the circle symmetry V.

Proposition
For n odd, the remainder function is R(x;", x;”) = J(x;", x;),
and so satisfies

PR(x5 . Xq)

rs —
oxFoxg

quRrsﬁpr = Gqs .

Defines a pseudo-hyperkahler structure on Kn:

ds® .= Rdx; @dxg, w®=eSdxtAadxE, Q= R®dx Adxg

¢ Follows from LyX(¢) = 0.
e Completely integrable system of overdetermined PDE.

e Lax: ﬁ,_(C2—1)a++(C2+1)1Jrsa = [Lr, Ls] =0.



Summary & directions

Summary of geometry:
¢ Remainder function generates pseudo-hyperkahler
geometry on KCp, for n-odd enhancing cluster geometry.
e Has circle symmetry, but not manifest in x;* coords.
Expect orbifold point for fixed point < regular polygon.
Standard lore: R smooth in double soft limit > , — 0.
e For n even must understand geometry of such double soft
‘corners’: ~ reduction to even n.
* ~ hierarchy of nested boundaries determining full solution.

Outlook
e Expect pseudo-hyperkahler for full kinematics when
3(n — 5) divisible by 4, soft limits give other n too.
e Can we see role for geometry and differential equations at
weak/intermediate coupling? Hints from Origin story.
¢ Note good numerical agreement with weak coupling!
¢ How does differential geometry tie into positive geometry?



The end

Thank You!



