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Determine new geometric structures on space of kinematic
data for super Yang-Mills amplitudes at strong coupling.



Amplitudes, Wilson loops & Strings in AdS
Planar N = 4 dualities at strong coupling [Alday, Maldacena, Gaiotto, Sever & Vieira 2007-10]

Conjecture [Alday-Maldacena]: 3-way correspondence

Aλ = ⟨Wγ⟩λ =

∫
∂Σ=γ

D[Σ ⊂ AdS5 × S5] e−
1
α′ Sstring .

• A = A(k1, . . . , kn) amplitude,
• γ = polygon of ordered null momenta,
• Wγ = Wilson loop around γ

• λ = t’Hooft coupling, R2
AdS
α′ =

√
λ.

• Aλ = ⟨Wγ⟩λ proved for loop-integrand
[M., Skinner, Caron-Huot, 2010].
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Figure 3. Different pictures for the Wilson loops considered in this paper. For a possible scattering

configuration one has to include at least one incoming right mover and one outgoing left mover,

see (a). Notice that the momentum transfer is time-like in two of the cusps. In (b) we consider a

Wilson loop with two lines going to infinity. The corresponding Penrose diagram is shown in (c). In

(d) we have mapped this Penrose diagram to the cylinder, by identifying its left and right vertices.

Figure 4. We view the two dimensional space as a cylinder. We can consider a polygonal Wilson

loop going around the cylinder.

going to infinity. If we were to write the Penrose diagram for Minkowski space, then we

would find that we can have null lines at the boundaries, as in figure 3(c). In this case all the

cusps are forward or backwards, but three of them are at infinity. Namely, x+n = x−n = ∞
so that three of the cusps have at least one infinite coordinate. It is natural to consider this

configuration on the cylinder, which is the global boundary of AdS3. In this case we can

have a null polygon going around the cylinder,10 see figure 4(a). If we put a cusp at the

point corresponding to spatial infinity of the Minkowski patch, then we end up with the

configuration in figure 3(c)(d). Note that SL(2, R)L × SL(2, R)R transformations allow us

to fix the position of three x+i and three x−i . So we can always send some points to infinity.

However, once we send them to infinity, we might loose the information of whether they

are closing the contour on the upper side of the Minkowski boundary versus the lower side.

There is an embedding of the null polygon into a bounded region which also has a

clear scattering interpretation. For this purpose we embed the AdS3 space we have been

considering in a different way inside AdS5 (or actually AdS4). We can consider a null

polygon which lives in a subspace of R1,2, the subspace given by

− x̃20 + x̃21 + x̃22 = 1 (3.15)

This is a subspace of R1,2 which is conformal to a cylinder. Once we add the radial

coordinate, the R1,2 space leads to an AdS4 space (which could be a subspace of AdS5).

10We restrict ourselves to configurations that wrap the cylinder only once.
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γ ⊂ ∂AdS= M.• Strong coupling as α′ → 0, λ→ ∞:

⟨Wγ⟩λ ∼ e−
√
λAreaΣ/R2

+ . . .

• solved with Y-system ; good qualitative agreement!



Sketch of integrability approach [Alday, Maldacena, Gaiotto, Sever, Vieira]

• Exploit integrability of Minimal surfaces in AdS.
• Equation reduces to generalized Sinh-Gordon in AdS3.
• Reformulate as Z2-invariant SU(2) Hitchin system in AdS3,

or Z4-invariant SU(4) in AdS5.
• Wilson loop boundary conditions gives worldsheet CP1

with irregular singularity at ∞ depending on kinematic data.
• Stokes sectors at ∞ correspond to edges of polygon.
• Solution is encoded in Ys(ζ)-functions, holomorphic in

spectral parameter ζ using Lax pair.
• Area can be computed directly from Ys

Question: Moduli-spaces of regular Hitchin systems admit
Hyperkahler structures (and hence twistor spaces).
Is there some version of this story here?



Space of kinematic data for minimal surfaces in AdS3

Lemma
Null polygon γ ⊂ M1+1 has 2n sides with parameter space

K := M+
0,n ×M+

0,n = An−3 × An−3 .

Here M0,n = An−3 = {Xi ∈ RP1|Xi ̸= Xj}/Mobius, dim. = n − 3.
Proof:

• Let (X+,X−) be coords on M1+1 s.t.

ds2 = 2dX+ ⊙ dX−.

• Label edges of γ alternately by
constant X+ and X−

• gives coords {X+
i }, {X−

i }, i = 1, . . . ,n.
• Conf. group=Mobius+× Mobius−,
• quotient gives result.2
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Figure 1. Stokes sectors in the z plane (a) and in the w plane (b). The dashed lines are Stokes

lines for the left problem and anti-Stokes lines for the right problem. The opposite is true for dotted

lines. In (b) we see one sheet of the w plane. Each quadrant is associated to one cusp. Notice that

the two upper quadrants (dotted blue line) correspond to a single coordinate x−, while the two left

quadrants (dashed green line) correspond to a single x+ coordinate.
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Figure 2. Positions of the cusps on the boundary of AdS3. Each quadrant in w is mapped to a

cusp. As we go from one quadrant to the next we change only x+ or only x−, so we move along

light like lines on the boundary. We only show a portion of the polygon.

case of general n (and a general polynomial p) we expect that the solution near each cusp

reduces to the solution for the case we had above. This can be achieved if we demand that

α̂ → 0 when z (or w) go to infinity. In addition we demand that α (but not α̂) is finite

everywhere. This is expected to lead to a unique solution for the generalized sinh-Gordon

problem and we discuss some explicit solutions in section four. For large z we can set α̂ = 0

and we recover the above solutions within each anti-Stoke sector. We will discuss below

what happens when we change sectors. First let us discuss the form of the solution within

each sector.

When we combine the left and right problems, then we need to divide the w plane into

quadrants. The first is at Re(w) > 0 , Im(w) > 0 and the rest are simply rotations of this
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These are cluster varieties.



Cluster coordinates on K
Define cluster coordinates on each M±

0,n factor by:

• χi,j = cross ratio ↔ diagonal (i , j) of
n-gon

χi,j :=
(Xi − Xj)(Xi−1 − Xj+1)

(Xi − Xi−1)(Xj+1 − Xj)
,

• Need clusters {χs}, s = 1, . . . ,n − 3.
• Clusters ↔ triangulation of n-gon.
• E.g., zig-zag:

{χs} := {χs|χ2i−1 = χ−i,i , χ2i = χ−i−1,i} .

• Flipping a diagonal ↔ mutations.

1
92

83

Hereon, we use zig-zag and will see sets of mutations for
rotation of n-gon.



Y-system
Integrability ; computation of AreaΣγ by complex analysis.

Introduce spectral parameter ζ ∈ CP1 and functions

Ys = Ys(χ
+
r , χ

−
r , ζ) : K × CP1 → C , s = 1, . . . ,n − 3 ,

subject to:
1 Ys(1) = χ+

s , Ys(i) = χ−
s .

2 Ys analytic in ζ with branches at ζ = 0,∞ & cut: ζ ∈ R−.
3 As ζ → 0,∞, ∃!(Zs, Z̄s) functions of (χ+

r , χ
−
r ) s.t.

logYs(ζ) ∼
Zs

ζ
+ Z̄sζ + O(1) as ζ → 0,∞.

4 For Y++
s (ζ) = Y(eiπζ) analytic continuation as ζ → eiπζ:

Y++
2k+1Y2k+1 = (1 + Y2k+2)(1 + Y2k ) ,

Y2kY++
2k = (1 + Y++

2k+1)(1 + Y++
2k−1) .

Branching of Ys ↔ set of cluster mutations given by rotating
zig-zag triangulation by 2π/n.



Output of Y-system

• ∃! solution Ys(χ
+
r , χ

−
r , ζ) to Y-system (from TBA).

• Determines Zs(χ
+
r , χ

−
r ) too with

Zs ∼ logχ+
s − i logχ−

s , as χ±
r → 0,∞

• Remainder function (regularized area) obtained as

R(χ+
r , χ

−
r ) = −iεrsZr Z̄s−

∑
s

∫
ζ/Zs∈R−

dζ
πζ2 Zs log(1+Ys(ζ)) .

Gives procedure to construct amplitude via complex analysis,
but what does it mean geometrically?



The Y-system defines a twistor space

Definition
Define the twistor space Tn for Kn to be

Tn = Kn × CP1

= A+
n−3 × A−

n−3 × CP1 .

Smooth coords: (χ+
s , χ

−
s , ζ) or (Zr , Z̄r , ζ).

p→

K ∋ (χ+
s , χ

−
s )

↓

ζ ∈ CP1

Tn

• Tn is a complex-manifold: (Ys, ζ) give n − 2 local
holomorphic coords.

• Holomorphic projection p : Tn → CP1, projecting to ζ.
• The fibres of p admit holomorphic symplectic structures

Σ(ζ) = ϵrsdyr ∧ dys , ys = logYs , ϵ2k 2k±1 = ±1 .

• Non-degenerate only for n odd.
• The yr are invariant under S1 symmetry generated by

V = iζ
∂

∂ζ
+ iZr

∂

∂Zr
− i Z̄r

∂

∂Z̄r
.



From twistor space to pseudo-hyperkahler structure

Key device: Σ(ζ) = ϵrsdyr ∧ dys is global on CP1; no branching.
• Recall (Ys(1),Ys(i)) = (χ+

s , χ
−
s ) so setting x±

s = logχ±
s :

Σ(1) =
∑

ϵrsdx+
r ∧ dx+

s , Σ(i) =
∑

ϵrsdx−
r ∧ dx−

s .

• Σ(ζ) has double poles at ζ = 0,∞ as ys has single poles.
• But Σ(−ζ) = Σ(ζ) ; no terms in ζ, ζ−1.
• So Laurent expansion is:

Σ(ζ) =
(ζ2 + 1)2

4ζ2 Σ(1)− (ζ2 − 1)2

4ζ2 Σ(i) +
(ζ4 − 1)

4ζ2 Ω .

for some ζ-independent closed 2-form Ω.
• Rank n − 3 of Σ(ζ) ⇒ implies Ω = J rsdx+

r ∧ dx−
s with

J rs =
∂2J(x+

p , x
−
q )

∂x+
r ∂x−

s
, JpqJ rsϵpr = ϵqs .

Plebanski: J = Kahler scalar for pseudo-hyperkahler structure.



The remainder function R(χ+
r , χ

−
r )

Lemma (Alday, Maldacena)
R(χ+

r , χ
−
r ) = Hamiltonian of the circle symmetry V .

Proposition
For n odd, the remainder function is R(x+

r , x
−
r ) = J(x+

r , x
−
r ),

and so satisfies

Rrs =
∂2R(x+

p , x
−
q )

∂x+
r ∂x−

s
, RpqRrsϵpr = ϵqs .

Defines a pseudo-hyperkahler structure on Kn:

ds2 := Rrsdx+
r ⊙dx−

s , ω± = ϵrsdx±
r ∧dx±

s , Ω = Rrsdx+
r ∧dx−

s

• Follows from LVΣ(ζ) = 0.
• Completely integrable system of overdetermined PDE.
• Lax: Lr = (ζ2 − 1) ∂

∂x+
r
+ (ζ2 + 1)iJ rs ∂

∂x−
s
, [Lr ,Ls] = 0.



Summary & directions

Summary of geometry:
• Remainder function generates pseudo-hyperkahler

geometry on Kn for n-odd enhancing cluster geometry.
• Has circle symmetry, but not manifest in x±

r coords.
• Expect orbifold point for fixed point ↔ regular polygon.
• Standard lore: R smooth in double soft limit χ±

n−3 → 0.
• For n even must understand geometry of such double soft

‘corners’: ; reduction to even n.
• ; hierarchy of nested boundaries determining full solution.

Outlook
• Expect pseudo-hyperkahler for full kinematics when

3(n − 5) divisible by 4, soft limits give other n too.
• Can we see role for geometry and differential equations at

weak/intermediate coupling? Hints from Origin story.
• Note good numerical agreement with weak coupling!
• How does differential geometry tie into positive geometry?



The end

Thank You!


