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Motivation

In N=4 super Yang-Mills, the form of four-point amplitudes
is known to all orders in the coupling (thanks to dual
conformal symmetry). It depends on the cusp anomalous
dimension, which is known exactly from integrability.
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What can we learn from this for QFT calculations?
What methods allow us to see the AdS picture emerge!

2



A geometric approach to amplitudes

The Amplituhedron gives a novel
definition of the four-dimensional
loop integrand, without reference
to Feynman diagrams.

Unfortunately, dimensional regularization breaks the
beautiful geometric picture.VVe propose a deformation
of the Amplituhedron geometry that allows us to
obtain integrated amplitudes, working in four dimensions.
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Part |: Deformed
Amplituhedron Geometry



Simple examples of canonical

forms from geometry
Consider the interval 7 € [0,1]

Canonical form with logarithmic divergence at

boundaries: d7 d7

dzr(z) = 1:allog( . )

Z 7 — z—1

Residues, e.g.: ?g dzr(z) =1
z=0

This is the analog of the Feynman integrand, with
integration variable z. More generally, the geometry
depends additionally on external variables/parameters x.
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Workflow: from geometry to functions

|. Geometry defined by set of inequalities
(in physical or auxiliary space x, 7 )

l

2. Canonical differential form:
(rational) Feynman integrand w(x, z)

3. Feynman integral.
special function fx) = |o(x, 2)




Workflow: from geometry to functions

|. Geometry defined by set of inequalities
(in physical or aUX|I|ary space X, 7 )

2. Canonical differential form

(rational) Feynman mtegrand w(x, 7) _

3. Feynman integral:
special function f(x) = Ia)(x 2)




Sketch of Amplituhedron deformation

Amplituhedron:

Z1>O,Z2>O

A2

Integrand:
B ledZQ

<140

Deformation:

521+Zz>0

AZZ

>
{1

Zl+5Z2>O

0 = dz;dz;(1 — 55)
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Deformed four-point Amplituhedron |

terms of momentum twistors
ZZ Z3

\ X3 Xl —_ lez ,Xz — ZzZ3 .
Y = 27,7,

2
, 7 X

Massless on-shell kinematics: X7 := (X,X,) =0
(X,X,) =0
Amplituhedron geometry defined from inequalities:
(X,Y)>0,(X,Y)>0,(X5Y)>0,(X,Y) >0.

(13Y) < 0,(24Y) < 0.
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(+ cyclic)



Deformed four-point Amplituhedron in

terms of momentum twistors
Deformation: X, =X, + &X; X, =X, + X,
X2=X2—|-}/]X4 X4:X4+ﬁX2

One-loop geometry leads to ‘massive’ box integral
(X,Y)>0,(X,Y)>0,(X;Y)>0,(X,Y)>0.

X
(13AB) < 0., (24AB) < 0. N
0 i N X, Y X,
=g XYY LYW, Y)
Jy (X1 y 3 4 / %,

Massive propagators due to X7 # 0

Deformation preserves condition (X;X;,;) =0



Deformed kinematics in

N

X, X,

Xl
(XiXi+1) =0
(X;X;) # 0
Two dual conformal invariants:
_ (X1 X3)” _a + £&)°

X1X3 48
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X %)_(421 dni

momentum space
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Part 2: Result for one- and
two-loop amplitudes



Deformed integrands

The deformed canonical form is given by

MO ~ MO~ | TR

They depend on two cross-ratios, which we parametrize by

1 1\2 1 1\?
Uu—=—\x-+— ; V=— y+_ ’
4 X 4 y

Undeformed case is recovered as x,y —- 0, x/y=t/s

We chose the normalisation so that they have unit leading
singularities, as in the undeformed case.™
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Quick recap

We defined deformed four-point amplitudes M(x, y)
that depend on two variables.

Up to two loops, the amplitude is given by infrared-
and ultraviolet-finite box and double box integrals.

Our next goal is to compute these integrals.VWe can
then take the massless limit to make contact with

the undeformed case.



The deformed amplitudes are
surprisingly simple!

E.g. simply by Feynman parametrization:

> d*a 1
B /0 GL(1) (a5 + azy + ajx + oty + ajas(l + 22) + asay (1 + y?))?

2logxlogy
(I =x2)(1 = y2)

(There is a simple way to obtain this using four-dimensional
differential equations, but that is another story...)

The (leading-singularity-)normalized amplitude is:

2
gymV
M(x,y;8) = 1 + g°MD(x, y) + g*MP(x, y) + ... g = ?6\/[ >
T

MWD(x,y) = —2logxlogy



Result for two-loop box integral

2

=) - 5@ (%) - 5~ ) logt?)

3nt P , 1 A o .
Q(z) =3Ja(2) + o + - log(2)" + - log(2)” + log(2)"Liz(1 — z)
1

+ 4n?Liy(—+/z) — log(z)Lis (1 — ;) —log(2)Li3 (1 — 2) ,

J4(2) = Lig(2) — log()Lis(2) + %logz(z)Liz(z) + élogB(Z) log(1 — 2) — % log(2) .

! 1

Only subset of two-loop functions needed, no Li,,, (Li2)2

[similar to Goncharov, Spradlin,Vergu,Volovich, 2010]

Symbol alphabet
x,x—1x+1y,y—1y+1lx—vyv,x+vy,1 —xy,1 +xy}
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Geometric amplitudes are simpler
compared to Coulomb branch ones

® Coulomb branch: [Alday, JMH, Plefka, Schuster 2009; Caron-Huot, [MH 2014]
2 uv (7 uv - Mu uv  Mvu 2
MY = — {210g2 (5 0 )+log(ﬁ b >log(5 5)—1
Buw Buv + B Buv + Bu Buv + By

2
. 6i_1 B : _ﬁuv_ﬂi B 9 5i‘|‘1
-|—. - [QLIQ (5uv‘|‘5z> 2L2< 3+ 1 ) log (ﬁuv%—ﬁZ)}}

Bu:Vl+u7 51): 1 +w, 5uv:\/1‘|‘u‘|‘v-

At two loops, Li,, needed.
® Deformed Amplituhedron:
MWD(x,y) = —2logxlogy

However, the Coulomb branch amplitudes have a Lagrangian

formulation.We currently only have the geometric definition.
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Taking the deformation to zero

We know the deformed amplitude M(x,y) up to two loops.
Undeformed case is recovered as x,y = 0, x/y=t/s

We propose the following exact formula:

. 1
lim 1Og M = — ircusp (g) 1Og X 10g Y+ gdeformed (g) log(xy) - Cdeformed (g) 9

x,y—0

[similar to Coulomb amplitudes: Alday, JMH, Plefka, Schuster 2009;
comparison to dimensional regularization: JMH, Moch, Naculich 201 | ]

We confirm this to two loops, with the following values:

Fcusp(g) — 492 — 8C294

3

gdeformed (g) — _4<394 + ... C1deformed (g) — _1_077494 + ...



Other interesting limits
Recall the two-loop alphabet
x,x—1x+1y,y—1y+1lx—v,x+vy,1 —xy,1 +xy}

Zeros correspond to (potentially singular physical limits).
It is interesting to study universal formulas in those.

Vam? —s —+/—s  VaAm? -t =/t
xz\/4m2_s+\/__s y_\/4m2—t+\/—_t
Examples:
x— 1 low energy limit s = 0
x = — 1 threshold limit s — 4m?
x— 0 Regge limit § = o0

Interesting to explore further the full kinematic space!
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Recap

Our Amplituhedron deformation leads to finite four-
point amplitudes that depend on two cross-ratios X,Y.

We determined the integrals in the two-loop
amplitude. They are simpler compared to Coulomb-
branch amplitudes.

We proposed an exact form of the amplitude in the limit
where the deformation parameters are taken to zero.

21



Extra slides: Differential
equations algorithm for finite
loop integrals
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Key features of the method

[Caron-Huot and JMH, 2014]

We wrrite all integrals in embedding space. This makes dual
conformal symmetry and ultraviolet finiteness manifest.

The differential operators and integration-by-parts
identities (IBP) stay in this space. Therefore only a subset
of integrals needs to be considered (compared to
dimensional regularization).

Four-dimensional Laplace-type equations relate integrals
at different loop orders.
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One-loop differential equations

1
Ga a9,a3,a4 +— y 4 , —
1,02,a3,04 /Y (le)al (XQY)"’Q(X3Y)&3(X4Y)CL4 ZiZl az — 4

Differential operator:

1
O = (—1+z)(1+x) (2011 = Or3 = O30 + 2033) Oij = (X’ian)

Differential equation:

2x 2 _ L
061111 = 7501~ 75 G021 (similar for y derivative)

Solve for normalization (leading singularity):

gs=(1=x)(1 =y)G 1,
2
0,84 = — | — 2 Go,12.1

Repeat procedure for triangle integral — iterative algorithm!
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One-loop differential equations (2)

Outcome of iterative algorithm:

g1 =22y Ga200, / 0 0 0 O\ / 00 0 0\
go = x(1 — y2) Goi121 ~ O 0 00 ~ 1000 .
g3 =(1—2*)yGia10, Oaf = —% 0 00 %g = Oy 0 0 0 g
gi=(1—-2)(1—-y*) Gri11. \ 0 -200) \ 0 0-20)

Integrate up solutions with boundary condition at x=y=1.

g1 — 17
g2 = — lOg(y),
gs = — lOg(Qf) )

g1 = 2log(x) log(y) -
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Two-loop differential equations (DE)

Transcendental weight:
4

S

Non-zero entries of DE represented arrows.
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Open questions

Is there a quantum field theory that corresponds to
the deformation? What is the role of unitarity?

All integrals needed in the differential equations
method are finite functions. Is there a streamlined
geometry-based approach for obtaining the integral
basis and the differential equations matrix!?

The amplitude has many interesting limits. Can we
determine them using the underlying geometry?
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Thank you!
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