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Motivation
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In N=4 super Yang-Mills, the form of four-point amplitudes 
is known to all orders in the coupling (thanks to dual 
conformal symmetry). It depends on the cusp anomalous 
dimension, which is known exactly from integrability.

What can we learn from this for QFT calculations? 
What methods allow us to see the AdS picture emerge? 
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A geometric approach to amplitudes

3

The Amplituhedron gives a novel 
definition of the four-dimensional 
loop integrand, without reference 
to Feynman diagrams.

Unfortunately, dimensional regularization breaks the 
beautiful geometric picture. We propose a deformation 
of the Amplituhedron geometry that allows us to 
obtain integrated amplitudes, working in four dimensions.



Outline

2. Result for one- and two-loop amplitudes
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1. Deformed Amplituhedron geometry 

3. (Extra slides) Differential equations algorithm 
for finite loop integrals.



Part 1: Deformed 
Amplituhedron Geometry
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Simple examples of canonical 
forms from geometry

Consider the interval z ∈ [0,1]

Canonical form with logarithmic divergence at 
boundaries:

dz r(z) =
dz
z

−
dz

z − 1
= d log ( z

z − 1 )

This is the analog of the Feynman integrand, with 
integration variable z. More generally, the geometry 
depends additionally on external variables/parameters x.

Residues, e.g.: ∮z=0
dz r(z) = 1
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Workflow: from geometry to functions

1. Geometry defined by set of inequalities          
(in physical or auxiliary space  )x, z

2. Canonical differential form:                      
(rational) Feynman integrand ω(x, z)

3. Feynman integral: 
special function        f(x) = ∫ ω(x, z)
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Workflow: from geometry to functions

1. Geometry defined by set of inequalities          
(in physical or auxiliary space  )x, z

2. Canonical differential form:                      
(rational) Feynman integrand ω(x, z)

3. Feynman integral: 
special function        f(x) = ∫ ω(x, z)

 which geometries 
are relevant?

⟶

 how to construct 
the form in practice?

⟶

 how to perform 
the integrations?

⟶
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Sketch of Amplituhedron deformation

ω =
dz1dz2

z1z2

Amplituhedron: Deformation:

Integrand:
z1 + ξz2 > 0

ξ̃z1 + z2 > 0

z1

z2

z1 > 0 , z2 > 0

z1

z2

ω =
dz1dz2(1 − ξξ̃)

(z1 + ξz2)(ξ̃z1 + z2)
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Deformed four-point Amplituhedron in 
terms of momentum twistors

⟨X1Y⟩ > 0 , ⟨X2Y⟩ > 0 , ⟨X3Y⟩ > 0 , ⟨X4Y⟩ > 0 .

X1 = Z1Z2 , X2 = Z2Z3 ,

Amplituhedron geometry defined from inequalities:

⟨13Y⟩ < 0 , ⟨24Y⟩ < 0 .

Massless on-shell kinematics: X2
1 := (X1X1) = 0

(X1X2) = 0 (+ cyclic)

X1

X2

X3

X4Y

Z2

Z1

Z3

Z4

X3 = Z3Z4 , X4 = Z4Z1 ,

Y = ZAZB
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Deformed four-point Amplituhedron in 
terms of momentum twistors

Deformation: X̄1 = X1 + ξX3 X̄3 = X3 + ξ̃X1

X̄2 = X2 + ηX4 X̄4 = X4 + η̃X2

⟨X̄1Y⟩ > 0 , ⟨X̄2Y⟩ > 0 , ⟨X̄3Y⟩ > 0 , ⟨X̄4Y⟩ > 0 .
⟨13AB⟩ < 0 , ⟨24AB⟩ < 0 .

One-loop geometry leads to ‘massive’ box integral

M(1) = ∮Y

N
⟨X̄1Y⟩⟨X̄2Y⟩⟨X̄3Y⟩⟨X̄4Y⟩

X̄1

X̄2

X̄3

X̄4Y

Massive propagators due to X̄2
i ≠ 0

Deformation preserves condition (X̄iX̄i+1) = 0



Deformed kinematics in momentum space
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X̄1

X̄2

X̄3

X̄4

m1

p2
i = m2

i + m2
i+1

m4m2

m3

p1

p2 p3

p4

s = (p1 + p2)2 t = (p2 + p3)2(X̄iX̄i) ≠ 0
(X̄iX̄i+1) = 0

Two dual conformal invariants:

u =
(X̄1X̄3)2

X̄2
1X̄2

3
=

(1 + ξξ̄)2

4ξξ̄

v =
(X̄2X̄4)2

X̄2
2X̄2

4
=

(1 + ηη̄)2

4ηη̄

=
(−s + m2

1 + m3)2

4m2
1m2

3

=
(−t + m2

2 + m4)2

4m2
2m2

4



Part 2: Result for one- and 
two-loop amplitudes
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Deformed integrands
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The deformed canonical form is given by

We chose the normalisation so that they have unit leading 
singularities, as in the undeformed case.*

M(1) ∼ M(2) ∼ +

They depend on two cross-ratios, which we parametrize by

u =
1
4 (x +

1
x )

2

, v =
1
4 (y +

1
y )

2

,

Undeformed case is recovered as x, y → 0 , x/y = t/s



Quick recap
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M(x, y)We defined deformed four-point amplitudes      
that depend on two variables.

Up to two loops, the amplitude is given by infrared- 
and ultraviolet-finite box and double box integrals.

Our next goal is to compute these integrals. We can 
then take the massless limit to make contact with 
the undeformed case.



The deformed amplitudes are 
surprisingly simple!
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E.g. simply by Feynman parametrization:

=
2 log x log y

(1 − x2)(1 − y2)

(There is a simple way to obtain this using four-dimensional 
differential equations, but that is another story…)

It is possible to derive Feynman representation in the embedding formalism. Let us
introduce Feynman parameters for the family of one-loop integrals (2.22)

Ga1,a2,a3,a4 =
�(
P4

i=1 ai)Q4
i=1 �(ai)

Z

Y

Z 1

0

d
4
↵

GL(1)

↵
a1�1
1 ↵

a2�1
2 ↵

a3�1
3 ↵

a4�1
4

(↵1X1 + ↵2X2 + ↵3X3 + ↵4X4, Y )4
, (2.25)

where we used linearity of the scalar product in the embedding space. The definition
of the measure (2.23) allows us to perform integration with respect to Y , where Q =

↵1X1 + ↵2X2 + ↵3X3 + ↵4X4,

Ga1,a2,a3,a4 =
1

Q4
i=1 �(ai)

Z 1

0

d
4
↵

GL(1)

↵
a1�1
1 ↵

a2�1
2 ↵

a3�1
3 ↵

a4�1
4

(↵2
1x+ ↵2

2y + ↵2
3x+ ↵4y + ↵1↵3(1 + x2) + ↵2↵4(1 + y2))2

,

(2.26)
where we applied kinematics relations (2.21). For example for the Feynman represen-
tation of the one-loop box is as follows

G1,1,1,1 =

Z 1

0

d
4
↵

GL(1)

1

(↵2
1x+ ↵2

2y + ↵2
3x+ ↵4y + ↵1↵3(1 + x2) + ↵2↵4(1 + y2))2

(2.27)
This representation can be used to obtain the analytic expression for the box integral

G1,1,1,1 =
2 log(x) log(y)

(1� x2)(1� y2)
. (2.28)

By comparing this with a Feynman parametrization of the massive one-loop box, in
which case the second Symanzik polynomial is given by F = ↵

2
1m

2
1 + ↵

2
2m

2
2 + ↵

2
3m

2
3 +

↵
2
4m

2
4 + ↵1↵3(m2

1 +m
2
3 � s) + ↵2↵4(m2

2 +m
2
4 � t) + ↵1↵2(m2

1 +m
2
2 � p

2
1) + ↵2↵3(m2

2 +

m
2
3 � p

2
2) + ↵3↵4(m2

3 +m
2
4 � p

2
3) + ↵1↵4(m2

1 +m
2
4 � p

2
4), we can make the identification

between deformation parameters and usual kinematics

m
2
1 = m

2
3 = x , m

2
2 = m

2
4 = y ,

s = �(1� x)2 , t = �(1� y)2 ,

p
2
1 = p

2
2 = p

2
3 = p

2
4 = x+ y .

(2.29)

3 Two-loop deformed amplitude

3.1 Differential equation in 4 dimensions

3.1.1 IBP relations

We will generate IBP relations directly in the embedding space as in this formalism
we can in a simple way restrict to the subset of IBP relations between dual conformal

– 7 –

M(1)(x, y) = − 2 log x log y

The (leading-singularity-)normalized amplitude is:

M(x, y; g) = 1 + g2M(1)(x, y) + g4M(2)(x, y) + … g2 =
g2

YMNc

16π2



Result for two-loop box integral
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where

J4(z) = Li4(z)� log(z)Li3(z) +
1

2
log2(z)Li2(z) +

1

6
log3(z) log(1� z)�

1

48
log4(z) .

(3.20)

The formula we find is manifestly real-valued for 0 < x < y < 1. In fact, it is real-valued
for all x > 0, y > 0. It involves only classical polylogarithms. This is simpler compared
to the two-loop box contributing to the Coulomb branch amplitude [1], where Li2,2 is
needed. There is also no Li22. It has the following symmetry properties

g11(x, y) =g11(1/x, y) , (3.21)
g11(x, y) =� g11(x, 1/y) . (3.22)

Moreover, g11 can be written as follows,
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Symbol alphabet
{x, x − 1,x + 1,y, y − 1,y + 1,x − y, x + y,1 − xy,1 + xy}

Only subset of two-loop functions needed, no Li2,2, (Li2)2

[similar to Goncharov, Spradlin, Vergu, Volovich, 2010]



Geometric amplitudes are simpler 
compared to Coulomb branch ones

18

[Alday, JMH, Plefka, Schuster 2009; Caron-Huot, JMH 2014]

The amplitude M can be expanded perturbatively in the coupling g2 ≡ g2YMNc/(16π2), as

M = 1 + g2M (1) + g4M (2) + g6M (3) +O
(

g8
)

. (2.3)

The expression for the loop integrand of M up to four loops was derived using unitarity cuts

[29]. The loop integrals up to three loops were evaluated analytically in ref. [1]. The main

focus of this paper is to investigate the various limits discussed above, and to understand
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(
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(
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(
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∫ x
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In this formula, the g2/(6m4) term is one-loop exact, as predicted from non-renormalization

theorems (see ref. [31] and references therein).
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However, the Coulomb branch amplitudes have a Lagrangian 
formulation. We currently only have the geometric definition.

M(1)(x, y) = − 2 log x log y

• Coulomb branch:

• Deformed Amplituhedron:
At two loops,         needed.Li2,2



Taking the deformation to zero
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[similar to Coulomb amplitudes: Alday, JMH, Plefka, Schuster 2009; 
comparison to dimensional regularization: JMH, Moch, Naculich 2011]

We know the deformed amplitude            up to two loops.

Undeformed case is recovered as x, y → 0 , x/y = t/s

M(x, y)

2 Deformed four-point amplitude

Let us make the following ansatz for the four-point amplitude (normalized by tree-level)

M = 1� g2r1(x, y)I1(x, y) + g4 [r2(x, y)I2(x, y) + r2(y, x)I2(y, x)] + . . . . (2.1)

Here g2 = g2YMN/(16⇡2). The normalization factors r1 and r2 were introduced in such a
way that in the undeformed case we have [2]

r1(0, 0) = 1 , r2(0, 0) = 1 . (2.2)

One natural choice for the ri is to demand that M has constant leading singularities. This
gives

r1(x, y) = (1� x2)(1� y2) , r2(x, y) = (1� x2)2(1� y2) . (2.3)

It will be interesting to consider logM in view of exponentiation of the amplitude in various
limits. Expanding to order g4, we have

logM =� g2r1(x, y)I1(x, y)

+ g4

r2(x, y)I2(x, y) + r2(y, x)I2(y, x)�

1

2
(r1(x, y)I1(x, y))

2

�
+ . . . . (2.4)

2.1 BDS exponentiation

In the limit x ! 0, y ! 0, we approach the massless box configuration. The divergence
depends on a finite ratio t/s. Let us recall the value of the cusp anomalous dimension,

�cusp(g) = 4g2 � 8⇣2g
4 + . . . . (2.5)

One can show that eq. (2.2) is sufficient for the infrared divergences to exponentiate, and
eq. (2.3) satisfies this. We find that the different terms in the limit behave as

lim
�!0

I1(x�, y�) =2 log2 � + . . . , (2.6)

lim
�!0

I2(x�, y�) = log4 � + . . . . (2.7)

Taking into account eq. (2.4) and (2.2), we conclude that the leading term divergences
cancel in logM . Going to subleading terms, we find

lim
x,y!0

logM = �
1

2
�cusp(g) log x log y + Gdeformed(g) log(xy) + Cdeformed(g) , (2.8)

with

Gdeformed(g) = �4⇣3g
4 + . . . , Cdeformed(g) = �

3

10
⇡4g4 + . . . . (2.9)

This is very similar to how exponentiation works on the Coulomb branch, see [3, 4].

4
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We confirm this to two loops, with the following values:



Other interesting limits
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Recall the two-loop alphabet

Examples:

x → 1

Zeros correspond to (potentially singular physical limits). 
It is interesting to study universal formulas in those.

low energy limit

{x, x − 1,x + 1,y, y − 1,y + 1,x − y, x + y,1 − xy,1 + xy}

x =
4m2 − s − −s

4m2 − s + −s

s → 0
x → − 1 threshold limit s → 4m2

x → 0 Regge limit s → ∞

Interesting to explore further the full kinematic space!

y =
4m2 − t − −t

4m2 − t + −t



Recap
…

Our Amplituhedron deformation leads to finite four-
point amplitudes that depend on two cross-ratios x,y. 

21

We determined the integrals in the two-loop 
amplitude. They are simpler compared to Coulomb-
branch amplitudes.

We proposed an exact form of the amplitude in the limit 
where the deformation parameters are taken to zero.



Extra slides: Differential 
equations algorithm for finite 

loop integrals
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Key features of the method
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[Caron-Huot and JMH, 2014]

We write all integrals in embedding space. This makes dual 
conformal symmetry and ultraviolet finiteness manifest.

The differential operators and integration-by-parts 
identities (IBP) stay in this space. Therefore only a subset 
of integrals needs to be considered (compared to 
dimensional regularization).

Four-dimensional Laplace-type equations relate integrals 
at different loop orders.



One-loop differential equations
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Contents

1 Deformed geometry and integrals 1

2 IBP relations and vectors 2

3 One-loop differential equation 2

4 Two-loop differential equation 4

5 Parametric representation of integrals 9

6 Numerics of two-loop double box 9

A Analytic formulas for simple two-loop integrals 12

1 Deformed geometry and integrals

We consider four-particle scattering in embedding space [1]. We introduce two defor-
mation parameters x and y, such that the deformed kinematics is given by [2, 3]

(X1X2) = (X2X3) = (X3X4) = (X4X1) = 0 ,

(X1X3) = 1 + x
2
, (X2X4) = 1 + y

2
,

X
2
1 = X

2
3 = 2x , X

2
2 = X

2
4 = 2y ,

(1.1)

where X
2 := (XX). We consider a family of one-loop integrals defined by

Ga1,a2,a3,a4 :=

Z

Y

1

(X1Y )a1(X2Y )a2(X3Y )a3(X4Y )a4
, (1.2)

where
P4

i=1 ai = 4, and where the measure is defined such that
Z

Y

1

(Y Q)4
=

1

�(4)

1

[12(QQ)]2
. (1.3)

At two-loops we consider a family of integrals defined by,

Ga1,a2,a3,a4,b1,b2,b3,b4,c :=

Z

Y1,Y2

(Y1Y2)�c

(X1Y1)a1(X2Y1)a2(X3Y1)a3(X4Y1)a4(X1Y2)b1(X2Y2)b2(X3Y2)b3(X4Y2)b4
,

(1.4)

where the double box is defined by G1,1,1,0,1,0,1,1,1.
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Differential operator:

integrals in four dimensions. The proper IBP vectors in the embedding formalism can
be constructed by requiring the orthogonality relation between integration variables
Yk, k = 1, . . . , l, and the IBP vector. What orthogonality relation? Better to recall
necessary basics from 2014 paper? Imposing this necessary condition we can found for
the one-loop integrals the following IBP vectors

Q
a
ij ⌘ (Y Xj)X

a
i � (Y Xi)X

a
j , (3.1)

for (i, j) 2 {1, 2, 3, 4}. By applying the operator @YQij under the integration sign in
(2.22) we get for the one-loop the one-loop integrals

0 =
4X

k=1

ak

⇥
(XiXk)A

�
j � (XjXk)A

�
i

⇤
A

+
k Ga1,a2,a3,a4 , (3.2)

where A
±
i changes index ai of G by ±1.

3.1.2 One-loop differential equations

The derivatives with respect to deformation parameters can be obtained by requiring
the correct results for the kinematics (2.21). As a result we have

@x =
1

(�1 + x)(1 + x)
(xO1,1 �O1,3 �O3,1 + xO3,3) (3.3)

where Oi,j = (Xi@Xj). [JMH: Explain better what relations (3.3) satisfies. Maybe it’s
better to write first an operator that acts on the cross-ratio (using in (3.3) the embedding
vectors), and only then switching to X?] An analogous definition holds for @y. Note that
this assumes that we act on a function that is invariant under rescaling of the Xi.

By applying these differential operators to the box integral G1,1,1,1, we get

@xG1,1,1,1 =
2xG1,1,1,1 � 2G0,1,2,1

1� x2
,

@yG1,1,1,1 =
2yG1,1,1,1 � 2G1,2,1,0

1� y2
,

(3.4)

where we used the symmetry G2,1,0,1 = G0,1,2,1. [JMH: First explain hwo we can use these
equations to determine the leading singularity of G1,1,1,1.]

In order to solve these differential equations, we need to know G2,1,0,1 and G1,2,1,0,
so we write down differential equations for these:

@xG0,1,2,1 = �
G0,1,2,1

x
,
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2yG0,1,2,1 � 2G2,2,0,0

1� y2
,

(3.5)
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integrals in four dimensions. The proper IBP vectors in the embedding formalism can
be constructed by requiring the orthogonality relation between integration variables
Yk, k = 1, . . . , l, and the IBP vector. What orthogonality relation? Better to recall
necessary basics from 2014 paper? Imposing this necessary condition we can found for
the one-loop integrals the following IBP vectors

Q
a
ij ⌘ (Y Xj)X

a
i � (Y Xi)X

a
j , (3.1)

for (i, j) 2 {1, 2, 3, 4}. By applying the operator @YQij under the integration sign in
(2.22) we get for the one-loop the one-loop integrals

0 =
4X

k=1

ak

⇥
(XiXk)A

�
j � (XjXk)A

�
i

⇤
A

+
k Ga1,a2,a3,a4 , (3.2)

where A
±
i changes index ai of G by ±1.

3.1.2 One-loop differential equations

The derivatives with respect to deformation parameters can be obtained by requiring
the correct results for the kinematics (2.21). As a result we have

@x =
1

(�1 + x)(1 + x)
(xO1,1 �O1,3 �O3,1 + xO3,3) (3.3)

where Oi,j = (Xi@Xj). [JMH: Explain better what relations (3.3) satisfies. Maybe it’s
better to write first an operator that acts on the cross-ratio (using in (3.3) the embedding
vectors), and only then switching to X?] An analogous definition holds for @y. Note that
this assumes that we act on a function that is invariant under rescaling of the Xi.

By applying these differential operators to the box integral G1,1,1,1, we get
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equations to determine the leading singularity of G1,1,1,1.]

In order to solve these differential equations, we need to know G2,1,0,1 and G1,2,1,0,
so we write down differential equations for these:

@xG0,1,2,1 = �
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∂xG1,1,1,1 =
2x

1 − x2
G1,1,1,1 −

2
1 − x2

G0,1,2,1 (similar for y derivative)

Differential equation:

Solve for normalization (leading singularity):
g4 = (1 − x2)(1 − y2)G1,1,1,1

∂xg4 = −
2

1 − x2
G0,1,2,1

Repeat procedure for triangle integral         iterative algorithm!⟶
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and

@xG1,2,1,0 =
2xG1,2,1,0 � 2G2,2,0,0

1� x2
,

@yG1,2,1,0 = �
G1,2,1,0

y
,

(3.6)

where we used IBP relations (3.2) to simplify the expressions. Finally, in order to solve
these differential equations, we need to know G2,2,0,0,

@xG2,2,0,0 = �
G2,2,0,0

x
,

@yG2,2,0,0 = �
G2,2,0,0

y
,

(3.7)

Thus, we find that our system of differential equation involves four master inte-
grals G1,1,1,1, G0,1,2,1, G1,2,1,0 and G2,2,0,0. This system can be written compactly by
normalizing these four functions by their leading singularities such that they are pure
functions:

g1 = 2xy G2,2,0,0 ,

g2 = x(1� y
2)G0,1,2,1 ,

g3 = (1� x
2)y G1,2,1,0 ,

g4 = (1� x
2)(1� y

2)G1,1,1,1 .

(3.8)

In terms of these functions, the x and y derivatives on ~g = (g1, g2, g3, g4) take the form:

@x~g =

0

BBB@

0 0 0 0

0 0 0 0

�
1
x 0 0 0

0 �
2
x 0 0

1

CCCA
~g ⌘ Ax~g , and @y~g =

0

BBB@

0 0 0 0

�
1
y 0 0 0

0 0 0 0

0 0 �
2
y 0

1

CCCA
~g ⌘ Ay~g , (3.9)

so we can write these in a combined way as

d~g = (dÃ)~g , (3.10)

where

Ã =

0

BBB@

0 0 0 0

� log (y) 0 0 0

� log (x) 0 0 0

0 �2 log (x) �2 log (y) 0

1

CCCA
, (3.11)
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Integrate up solutions with boundary condition at x=y=1.

Outcome of iterative algorithm:

such that @xÃ = Ax and @yÃ = Ay. [JMH: We could redefine our integrals such that the
matrix entries are simpler.]

The solution to these differential equations is given by: [JMH: Here the discussion
of the boundary conditions is missing.]

g1 = 1 ,

g2 = � log(y) ,

g3 = � log(x) ,

g4 = 2 log(x) log(y) .

(3.12)

[JMH: Add comment that this agrees with the direct Feynman diagram calculation for
Ĩ1,1,1,1.]

3.2 Two-loop differential equations

The similar procedure allows one to find the system of differential equations for the
double box integral G1,1,1,0,1,0,1,1,1. However, in two loop case there are few details
regarding the generation of the IBP relations that have to be discussed. The simple
application of the extension of the Qij vectors to the two-loop case, i.e.,

Q
a
ij,1 ⌘ (Y1Xj)X

a
i � (Y1Xi)X

a
j , Q

a
ij,2 ⌘ (Y2Xj)X

a
i � (Y2Xi)X

a
j , (3.13)

for (i, j) 2 {1, 2, 3, 4}, is not enough. the introduction of new IBP vectors is necessary
and we found that the addition of the following vectors is sufficient

Q
a
i,2 ⌘ (Y1Xi)Y

a
2 � (Y1Y2)X

a
i , Q

a
i,1 ⌘ (Y2Xi)Y

a
1 � (Y2Y1)X

a
i . (3.14)

There role of these vectors is two-fold, on the one hand when they act one the internal
propagator squared, i.e., (Y1Y2)�2, the four-dimensional delta function is introduced
�
(4)(Y1Y2) resulting in the loop-reduction [1] and on the other hand when only first

power of the internal propagators appears it contract this propagator providing factored
integrals. [JMH: I don’t understand the two points in the previous paragraph. Can you
please try to explain better?]

We have found that in order to fully describe the system of differential equation
we need 11 functions gi i = 1, . . . , 11, which are pure functions defined in the following

– 10 –
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Figure 1. Differential equation tree. Arrows indicate how the functions are linked through d log
derivatives (see (A.2) and (A.3)).

where G = (g1, . . . , g11) and

A =

0
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.

(A.3)

The non-zero entries of the matrix A, as well as the basis elements gi, are visualized in
Fig. 1.

Solving the differential equations, we find the following analytic expressions,

g1 = 1 , (A.4)

7

Non-zero entries of DE represented arrows.

Transcendental weight:

4

3

2

1

0



Open questions

The amplitude has many interesting limits. Can we 
determine them using the underlying geometry?
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Is there a quantum field theory that corresponds to 
the deformation? What is the role of unitarity?

All integrals needed in the differential equations 
method are finite functions. Is there a streamlined 
geometry-based approach for obtaining the integral 
basis and the differential equations matrix?



Thank you!
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