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Outline

. Tutro to amplituhedron

. Loop amplituhedron veeds generalisation of previously
understood concepts: Tnternal boundaries

. Weighted positive geometries (WPGHs)

. Correlahnedron | squared amplituhedron



The amplituhedron
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Natural Generalization

Toy model
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Cavovical Form

o Natural map from geometry to differential form: "cavovical form'
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Positive geometry = region possessing a canovical form



Amplitude = Canovical Form of
(m=4) Amplituhedrov

: : : . : k
o Claim: The cavovical form of the (nk,4) amplituhedrov is the v-point,N WHY,
tree-level, plavar scattering amplitude in N=4 SYWM
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Loops tooll (Intearand)

L-Loop amplitubedron A = amplituhedron ¥
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Claim: canovical form of the (nk.lm=4) amplituhedron = planar, l-loop, N MHY, v-point
amplitude (intearand)



Covonical form

e Cavovical Form(and hence positive geometry) defived recursively via it's
residues

o Cavovical form = volume form;

e Has simple poles only

e Location of simple poles = location of boundary components

e residue on these poles = canovical form of correspondivg boundary cvmpnts
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(True for all boundary components)



~Tventually reach dimeusion O boundaries

b/ Ik { ’) e ) ‘ (depewnding ow oriewtation inherited from bulk)

/7 Waximal residues of positive geometries = +/-1 |

WMultiple residue = Residues of residue of residue ...

\
Boundary components of boundary components of boundary components....



Related comment: multiple residue vot unidue
-> higher codimension bonndaries not unidue

e Tv geveral multiple residues depend on the order you take single residues
o Analogons statement +true for boundaries
* Everything P@mc@chM consistent!

(Bommdam component of) Nk @@ovmeﬂ—m |

/kr (vot clear what interpretation
 of thisis for k> 1)

H

Co&hmemsmm k boundary component of @@ovmem |

Codimension 2 boundary = [A,C]
Boundary of sloping roof boundary = [B,C]
Boundary of flat roof boundary = [APB]

Simple
example




But:

Loop amplitude has max residues different from +/-1
/
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Now we take the residues in by = 0,¢1 = 0,09 = 0,¢c5 =0

complicated pole factorises revealing new pole

a2d1 + Cl1d2
ajazdyds (al — CI»2) (dl — dz) |

Now take the residue in a1 at a1 = a9

B (dl —+ dg)
asdyds (dy — dg)

Now take residue in di at di = do,
max res=2.
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L. R same orientation

. Loop amplituhedron # positive geometryll??

e Examive the above residues geometrically
o Start with amplituhedron. Carefully take boundaries corresponding
to each of the above residues:

0 >0, >0, —(a1—a)(dy —do) L L —

" (I.-la.-le dg (Cl-l — CLQ) (dl — dg)

R :={ay,as,dy,dy | ap > as > 0 A dy > dy > 0}
Ry :={ay,as,dy,dy | ay > ay > 0Ady > dy > 0}




%L'&/( -0 boundary,
P

A-a
"internal boundary) separativg two regions of opposite orientation (so
not oriented which was an assumption of positive geometryl)

Previously umnoticed feature:

The (loop) amplituhedron contains internal boundaries!
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Simple toy example
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Need geveralised positive geometry

Geveralized canonical form recursive def:

lim fQ = df N\ (Wext + 2Wint)

f—0

/ ,\
caonowical form of

comonical form of interval boundary region
standard (exterval)
boundary region



2dx dy \
(ust subtract
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GPGs Wwore complete than PEs:
Anything that triavgulates in GPGS 1s a GPG

e not true for positive geometries eq.




Put sugoests further generalisation:
Weighted Positive Geometry (WPG)

e Defive geometry by a piecewise constant Z-valued weight
function w (and orientation form O)

Orientation = volume form O ~ AO, Mo

everalise: "weighted orientation”
(w,0) ~ (sign(\)w, \O') N#0

Twteaer valued Volume form



Weighted Positive Geometry (WPH):

e Natural additive structure (geometries can overlap - makes proofs easiert!)

2, O2) = (wy + sign(A)ws, Oy)

Wi @ e Wi

e Natural Projection operator onto boundaries (discontinuities):




Residue of canonical form is canonical form of
the projection:

RescQ(w, O) = Qe (w, O))
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WPGSs -> GPGS avd PGS

* GPGS are WPESs with w =1 (in the GPG), O everywhere
else

e Positive Geometries (PGs) are WPESs with w = +1, O
everywhere (so a GPG) AND induced weight ow all nested
boundary compovents is +1, 0.



Maximal loop-loop residue
e  [see qabriele Dian talk later]
; All n one poer ANT) all in one Plame ANT) only Jrlmf@@ looP lmes r@vmmmq

CLATWM: ANY way vou reach this configuration gives the same answer (up to
a wumerical factor = number of iuterval boundaries crossed)



The correlahedron

e Tuterval boundaries first found in squared amplituhedron

o Amplituhedron-like (von max winding number) = amplitude x
amplitude

o S of amplituhedrov-like = squared amplituhedron (vo winding
wamber) = limit of correlahedron (gives HBPS correlators)

o Squared amplitude contains von-uvit max residues (but less
subtley - almost disconnected sum of positive geometries)



Amplituhedron, Amplituhedron-like aeometries

Awmplituhedron:
Yii+1jj+1)>0 1<i<j—1<n-2
Gy =Y € Gr(k,k+4)| (Yii+1ln) (=1)F >0 1<i<n-—1 (‘l’l"@@
{(Y'123:)} has k sign flips as i =4, ..,n [@\/@[)

for Z € Gro(k+4,n).

Natural @@memliwﬁom
Awmplituhedron-like:

(}H+1)J—l—1)>0 I1<i<j—1<n-—2

A = {} € Gr(k,k+4)| (Yii+11n) (—1]
{(Y123i)}
O<S<k
we owly consider
i IZ:I’\-Q_

Loop Versions also (ken-)



A VV\ P[H’(A\/] 6&1 VOV] =3 ﬂl VV\ P[l+Md 65 (N=4 SYW planar, perturbative integrands)

Amplituhedron-like -> products of amplitudes

WMain claim:
(5) o
ﬂ(’)’)"ﬂb .

canonical form

products of superamplitudes iz

e | oop version tool



Problem of non unit residues

observed here first

e Cavonical form (amplitude from
amplituhedron) means max residues = 0, +/-1

e the maximal residues of the squared amplituhedron
are wot ouly +/- 1

Qﬁ. (/A‘L)é,L :Z'AM,L I A‘)‘ &4’5/‘
R

max residues = 0, +/-2, +/-4

e Therefore GPGS or WPES
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squared

Correlahedrow L

n+k-plane  2-plaves \Y

metry \/(,Q,.[mkjrw/w) <>/)(,‘XJ'>70 = Gf\jé

Large dimension. Simple definition (vo winding number )

correlahedron — 92 ——— correlator

\ il

freeze/project freeze/project .-

/1 /1Y,

amplituhedron cylindrical decomp » amplitude.
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e Correlanedrov gives all half BPS siwgle trace correlators
o All correlators = new observation!l Consegquence frowm
e Eduivalent to all TT R gravity amplitudes in AdS

light-like
imit in
amplituhedron
Space



Correlators projected to twistor space

e Functions of lines in 3d projective twistor space X
o Lightlike limit = intersectivg lives (polygon)

@ point tree 5 é L‘
correlator (= 4 / NQ §
point 2 loop)

@ poivt tree
amplitude
(sduared)

4 point 2 loop
amplitude
(sduared)

5 point 1 loop
amplitude
(squared)




Tuture:

o amplituhedron boundary structure, genns (+ relation +o
ntegral [ symbol etc.):

o (Ise cuts via amplituhedron to determinve amplitude /
correlator at higher loops (constructive approach?)

o Applications of W@i@l/Pr@d POSITIVE HEOMETTYT - (cosmological pelstope

, negative geometries nov-planar amplitude
, momentum amplituhedron
ete.?] '

e Correlahedron projected to twistor space
(more natural, sets of lives movivg around in 3d, GL(2))
e More checks of correlahnedrown [ conect with recewt higher
polnt/charae correlator activity



