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Topological solitons
• A topological soliton is a localised solution of a PDE whose existence and 

stability relies on the topology of the system


• Examples:

1D: domain walls

2D: vortices, lumps

3D: monopoles, skyrmions

4D: instantons.


• They often have particle-like features, so are used as smooth models of 
particles. And they appear in condensed matter systems


• Space of static energy minimising solutions is called the moduli space



Example: nonlinear sigma model
The nonlinear sigma model in (2+1)D is given by








If we fix a boundary condition, then  compactifies to . Then  is a map 
between two-spheres. This has non-trivial topology as .


=> Each configuration has a topological charge , which cannot change under 
smooth deformations.

ℒ = ∂μσa∂μσa , σ ⋅ σ = 1

σ = (σ1, σ2, σ3), σ : ℝ2 → S2

ℝ2 S2 σ
Π2(S2) = ℤ

N



Example: nonlinear sigma model
Change coordinates to  and . Lagrangian becomes





z = x + iy R =
σ1 + iσ2

1 + σ3

ℒ ∝ ( |∂zR |2 + |∂z̄R |2 )/(1 + |R |2 )
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Example: nonlinear sigma model
Change coordinates to  and . Lagrangian becomes








Lagrangian is bounded below by topological charge 


Solutions satisfy  => 


z = x + iy R =
σ1 + iσ2

1 + σ3
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∂z̄R = 0 R(z, z̄) = R(z)

Bogomolny argument
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Lagrangian is bounded below by topological charge 


Solutions satisfy  => 


Can show that must be rational map, .  given by degree of 
rational map


Overall: the moduli space of the -lump is given by the order  rational maps
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Example: nonlinear sigma model



Solutions are:                 


Symmetries help up understand the moduli  physically.


Translation symmetry =>  ~ position


Scaling symmetry =>  ~ size


Internal symmetry  =>  ~ internal orientation

N = 1

R(z) =
a

z − c

a, c

c

|a |

σ1 + iσ2 → exp(iα)(σ1 + iσ2) arg(a)



Example: nonlinear sigma model

R(z) = 1/z

R(z) = 2/z R(z) = 2i/z

R(z) = − 1/(z − 2)

R(z) =
a

z − c
We plot the energy density.

The colour represents the 

phase of R



Example: nonlinear sigma model
Why is this useful? Can describe dynamics by promoting parameters (also 
known as “moduli” or “collective coordinates”) to time dependent functions:





We can then substitute these solutions into the original Lagrangian:





This is just a free particle on a manifold (the moduli space) with metric . The 
metric is induced by the field theory. 


  (geodesic equation)

R(z, t) =
λ(t)eiθ(t)

z − P(t)

ℒ = 1
2 ( ·λ, ·θ, ·P) g ( ·λ, ·θ, ·P)

T
− V(λ, θ, P)

g

ℒ = 1
2

·Xagab
·Xb ⟹ ··Xa + Γa

bc(X) ·Xb
·Xc = 0

CONSTANT



Example: nonlinear sigma model

, centered solutions are:         


Now: more fun! Can consider lump scattering on the 2-lump moduli space.


E.g.


N = 2 R(z) =
az + b
z2 − c

R(z) =
|b(t) |

z2 − c(t)



Example: nonlinear sigma model

, centered solutions are:         


Now: more fun! Can consider lump scattering on the 2-lump moduli space.


E.g.





N = 2 R(z) =
az + b
z2 − c

R(z) =
|b(t) |

z2 − c(t)

Rring(z) = 1/z2



Example: nonlinear sigma model
And we can consider other dynamics.

What we’ve discovered: a lump can exchange “phase energy” for “size energy”.



So?
The nonlinear sigma model is closely related to models of magnetism and 
ferroelectricity. The vector  might model the magnetisation vector , 
or Polarisation vector . 


Lumps become skyrmions.

(σ1, σ2, σ3) m̂
P

Emergent chirality in a polar meron to skyrmion phase transition



Lumps to skyrmions
So the basic facts we’ve learned about lumps should apply to skyrmions too.


=> Should be able to exchange “phase energy” for “size energy”.


Does this matter…? 


Maybe not.


Skyrmions in magnetic systems have a fixed phase. And their dynamics are 
driven by external currents/forces => hard to see this in action.




Halfway summary
The simplest nonlinear sigma model contains topological solitons called lumps, 
which have a conserved integer N


The N-lump moduli space is isomorphic to the based order N rational maps


We can use trajectories on the space of rational maps to approximate lump 
dynamics


Information about lumps might help understand defects in condensed matter


Experiments on the moduli space of lumps gives us information about the 
dynamics/interactions of skyrmions in magnetic and ferroelectric systems



The next half
The same thing



Instantons
Consider SU(2) Yang-Mills theory in R4





Contains solitons called instantons, labelled by integer N. These satisfy





Instanton solutions are known, and given by ADHM data. This is an 
 matrix of quaternions, which satisfy a nonlinear constraint called 

the reality condition.


Here’s some ADHM data:

ℒ = Tr FμνFμν

Fμν = ⋆ Fμν

N × (N + 1)



Instantons
Here’s some more with N=8:



“Nuclear” skyrmions
Nonlinear sigma model in 3D. Fundamental field, 

, with , identified with pions. 
Similar structure to chiral effective field theory:





Contains topological solitons called skyrmions with charge N.


Skyrme (’60):       Skyrmions = nuclei


                            N = baryon number


Witten (’79): this is a good idea, at least at large NC.


Sakai-Suigimoto (’04): this is a low-energy limit of holographic QCD.

U = σ(x) + iπ(x) ⋅ τ ∈ SU(2) π ⋅ π + σ2 = 1

ℒ = ℒ2 + ℒ4 + ℒ6 + . . . − V



Instantons and Skyrmions
The Sakai-Sugimoto models tells us that skyrmions are related to instantons. 
Originally an idea (from pure intuition) of Atiyah + Manton.

Instantons

Aμ(x)

Skyrmions

= U(x)exp (∫ A4(x, x4) dx4)



Instantons and Skyrmions
So, you give me ADHM data. I’ll give you a skyrmion.



Instantons
Here’s some more with N=8:



Instantons and skyrmions
Can also make families of configurations:








L = κ (1 i j k)

M =

R(i + j + k) α j + βk βi + αk αi + βj
α j + βk R(i − j − k) αi − βj αk − βi
βi + αk αi − βj R(−i + j − k) α j − βk
αi + βj αk − βi α j − βk R(−i − j + k)

.



Instantons and skyrmions

θ

Test data:







: toroidal ADHM data

, : fixed isorotations


, : rotations

: positions

L0 = (p1 LT2 q−1
1 , p2 iLT2 q−1

2 )

M0 = (q1MT2 q−1
1 + d 0

0 q2MT2 q−1
2 − d)

(LT2, MT2)
p1 p2

q1 = q( ⃗e1, θ) q2 = q( ⃗r, θ)
d = Rk



Instantons and skyrmions
This is…


…very fun



Instantons and Skyrmions
Not just fun. Can repeat the questions 
from the previous section: 


What are the dynamics?


What are the low-energy modes of a 
skyrmions? We know: 3 translations, 3 
orientations.



Instantons and Skyrmions
Not just fun. Can repeat the questions 
from the previous section: 


What are the dynamics?


What are the low-energy modes of a 
skyrmions? We know: 3 translations, 3 
orientations.


And one size mode.



Instantons and Skyrmions
But what happens when we rotate out of 
the plane?


What else is left to excite??



Instantons and Skyrmions
The Sakai-Sugimoto models tells us that skyrmions are projected instantons. 
Originally an idea (from pure intuition) of Atiyah + Manton.
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Instantons and Skyrmions
The Sakai-Sugimoto models tells us that skyrmions are projected instantons. 
Originally an idea (from pure intuition) of Atiyah + Manton.

Instantons

Aμ(x)

Skyrmions




and vector 
mesons

= U(x)exp (∫ A4(x, x4) dx4)



Instantons and Skyrmions
But what happens when we rotate out of 
the plane?


What else is left to excite??


The final skyrmions are “facing each 
other” again, but now with an excited 
meson field.

: Meson field



Instantons and Skyrmions
Overall, the low energy modes of a skyrmion are : 3 translations, 3 orientations, 
1 size mode and a “vector meson size mode”.


=> To describe 2-skyrmion dynamics need a 16-dimensional space (11 can be 
dealt with pretty easily).


Discovered this using instantons and ADHM data!



Instantons and Skyrmions
Something more particular. There exists a special path in the 2-skyrmion space:

Spin: anti-clockwise

Ang mom: clockwise



Something more particular. There exists a special path in the 2-skyrmion space:

Spin: anti-clockwise

Ang mom: clockwise Barely deforms when close

Instantons and Skyrmions



Something more particular. There exists a special path in the 2-skyrmion space:

Spin: anti-clockwise

Ang mom: clockwise Barely deforms when close Does nothing at the torus


=> path has zero length

Instantons and Skyrmions



Instantons and Skyrmions
Physically: a path where spin and angular momentum are correlated is 
unexpectedly short.


Short paths = high momentum = high energy


=> states with angular momentum and spin aligned have unexpectedly high 
energy


Short path = metric information


Can then do a semi-classical quantisation on the “moduli space” and follow this 
information through the calculation.



Instantons and Skyrmions
In a semi-classical quantisation, you are trying to derive the phenomenological 
nucleon nucleon interaction potentials.


This is hard.


The punchline: 

The isoscalar spin-orbit potential from the calculation is negative, due to the 
short path:


,


which matches phenomenological models.

∈ VIS
LS(r)

The metric information



Instantons and Skyrmions
The key point: detailed geometric information about the moduli space can have 
genuine physical consequences.


In this case: a short path in the instanton moduli space affects the spin-orbit 
potential in the nucleon-nucleon interaction.


I think that studying the detailed structure of moduli spaces is very fun.


And I hope this talk has convinced you that it can be useful, too!



Soliton moduli spaces
Chris Halcrow - KTH

Counting skyrmion moduli: 2103.15669 (with Thomas Winyard)

Skyrmions from ADHM data: 2110.15190 (with Josh Cork)


The nucleon-nucleon force from instantons: 2208.04863 (with Derek Harland) 

https://arxiv.org/abs/2103.15669
https://arxiv.org/abs/2110.15190
https://arxiv.org/abs/2208.04863

