

Maximal loop-loop cuts from the Amplituhedron

Gabriele Dian

Planar amplitudes integrands are top rational differential forms in the loop variables.

Multiresidues of amplitude integrands

- are at the core of generalized unitarity techniques [Bern, Dixon, Kossover],
- can be used as building block for recursion relations as BCFW and more recently [Bourjaily,Caron-Huot]

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Planar amplitudes integrands are top rational differential forms in the loop variables.

Multiresidues of amplitude integrands

- are at the core of generalized unitarity techniques [Bern, Dixon, Kossover],
- can be used as building block for recursion relations as BCFW and more recently [Bourjaily,Caron-Huot]

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The amplituhedron

Super amplitudes and their residues can be computed as the canonical form of respectively the Amplituhedron and its boundaries. [Nima, Trnka]

Main points

- **Cut's Geometry:** Derive the geometry of the boundaries of the Amplituhedron corresponding to some loop-loop cuts.
- **Computaing Cuts:** Show a strategy to compute the cuts from the geometry.
- Universality of Maximal Cuts: Show how many loop-loop residues we can take and describe their universal geometry.

Region variables

Planar integrands can be written using region variables

The momenta flowing in the edges are equal to distances between adjacent regions. Example:

$$p_1^2 = (x_2 - x_1)^2$$

<ロ> < 回 > < 回 > < 三 > < 三 > 三 の Q @ 4/17

Points and Lines

To every region variable, we can associate a line in twistor space that is a line in \mathbb{P}^3 , aka Gr(2, 4).

Null-separated regions correspond to intersecting lines

The internal regions correspond to loop momenta and are usually indicated with a pair of points A_iB_i

Tree-level amplitudes poles are related to the boundaries of the configurations space of points.

<ロ> < □ > < □ > < 三 > < 三 > < 三 > ○ < ○ 6/17

Loop integrand poles are related to the boundaries of the configurations space of lines.

Tree-level amplitudes poles are related to the boundaries of the configurations space of points.

Loop integrand poles are related to the boundaries of the configurations space of lines.

Very little is known of the configurations space of lines

New unforeseen "internal boundaries" appears deep in the loop amplituhedron. (see Paul's talk).

Tree-level amplitudes poles are related to the boundaries of the configurations space of points.

Loop integrand poles are related to the boundaries of the configurations space of lines.

Very little is known of the configurations space of lines

New unforeseen "internal boundaries" appears deep in the loop amplituhedron. (see Paul's talk).

The Amplituhedron

The 4-point MHV loop amplitude is a function of 4 points in \mathbb{P}^3 Z_1, \ldots, Z_4 and *L* lines represented by pairs of points A_1B_1, \cdots, A_LB_L . Angle-bracket notation:

$$\langle A_i B_j j k \rangle := \det(A_i B_i Z_j Z_k), \qquad \langle A_i B_i A_j B_j \rangle := \det(A_i B_i A_j B_j)$$

The MHV loop amplituhedron $A_{4,0,L}$ [Arkani-Hamed, Thomas, Trnka] is the space of oriented lines A_iB_i such that

$$\begin{split} \langle 1234 \rangle &> 0, \\ \langle A_i B_i 12 \rangle &> 0, \\ \langle A_i B_i 23 \rangle &> 0, \\ \langle A_i B_i 34 \rangle &> 0, \\ \langle A_i B_i 30 \rangle &< 0, \\ \langle A_i B_i A_j B_j \rangle &> 0. \end{split}$$

Useful notation for $\mathcal{A}_{4,0,L}$

$$A_iB_i \in \mathcal{A}_{4,0,1} \land \langle A_iB_iA_jB_j \rangle > 0$$

2-loop cut

Natural change of variable $A := A_1A_2 \cap A_2B_2$ For *L* loops we define

$$\mathcal{A}_{\mathsf{dc}}^{(L)} := \mathcal{A}\mathcal{B}_i \in \mathcal{A}_{4,0,1} \qquad \forall i \leq L$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 - の Q @ _ 8/17

2-loop cut

Natural change of variable $A := A_1A_2 \cap A_2B_2$ For *L* loops we define

$$\mathcal{A}_{\mathsf{dc}}^{(L)} := \mathcal{A}\mathcal{B}_i \in \mathcal{A}_{4,0,1} \qquad \forall i \leq L$$

This residue is equal to a sum of factorized of 1-loop terms [Arkani-Hamed, Langer, Yelleshpur Srikant, Trnka]

Geometric factorization

The canonical form of the Cartesian product of geometries is equal to the product of the canonical forms

 $\Omega(\mathcal{X}_1 \otimes \mathcal{X}_1) = \Omega(\mathcal{X}_1) \wedge \Omega(\mathcal{X}_2)$

$$\mathcal{A}_{\mathsf{dc}}^{(L)} = \bigcup_{i} \omega_i(\mathbf{A}) \bigotimes_{j} \lambda_i(\mathbf{B}_j)$$

where $\omega_i(A)$ is a tetrahedron and $\lambda_i(B_j)$ is a triangle.

The form will read

$$\mathcal{A}_{\mathsf{dc}}^{(L)} = \sum_{i} \Omega(\omega_i)(\mathbf{A}) \prod_{j} \Omega(\lambda_i)(\mathbf{B}_j)$$

New tree loops feature

$$\langle \mathbf{A}_2 \mathbf{B}_2 \mathbf{A}_3 \mathbf{B}_3 \rangle = (\mathbf{a}_3 - \mathbf{a}_2) \langle \mathbf{A}_1 \mathbf{B}_1 \mathbf{B}_2 \mathbf{B}_3 \rangle > 0$$

That corresponds to

$$((\boldsymbol{a}_3 - \boldsymbol{a}_2) > 0 \land \langle \boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{B}_2 \boldsymbol{B}_3 \rangle > 0) \lor ((\boldsymbol{a}_3 - \boldsymbol{a}_2) < \land \langle \boldsymbol{A}_1 \boldsymbol{B}_1 \boldsymbol{B}_2 \boldsymbol{B}_3 \rangle < 0)$$

Intersecting and sliding

We consider all loop-loop cuts that can eventually land on the configuration where all loops intersect in one point. Rule: No coplanar lines, that is no $\langle ABBB \rangle = 0$

Rules for determining the geometry

When we intersect two lines A_iB_i, A_jB_j we just remove $\langle A_iB_iA_jB_j \rangle > 0$, and introduce an intersection point $A_iB_i \cap A_jB_j$.

Sliding produces two regions with opposite orientations:

 $\langle A_i B_i A_j B_j \rangle > 0 \rightarrow \langle A B_i B_k B_j \rangle > 0$

and

$$\langle A_i B_i A_j B_j \rangle > 0 \rightarrow \langle A B_i B_k B_j \rangle < 0$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 12/17

A family of residues

Sliding order matters

Intersections instead commute.

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 13/17

A triangle in a triangle

For the MHV amplitude, after we project through A, the B_i geometry corresponds to points in a triangle.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 14/17

with $\langle B_1 B_2 B_3 \rangle > 0$ or $\langle B_1 B_2 B_3 \rangle < 0$

All-in-on-point-and-plane cuts

Let's study the boundaries $\langle AB_iB_jB_k \rangle = 0$, that is the 3 lines i, j, k lie on the same plane.

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E → E → 9 Q ↔ 15/17

All-in-on-point-and-plane cuts

Let's study the boundaries $\langle AB_iB_jB_k \rangle = 0$, that is the 3 lines *i*, *j*, *k* lie on the same plane.

For more than 3 points the $\langle AB_iB_jB_k \rangle > 0$ factorize and gives a partial ordering on the line

$$\langle AP^{\perp}B_{i}B_{j}\rangle > 0$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 15/17

plus a factor of 2 on the weight for each internal boundary.

All-in-on-point-and-plane cuts

Let's study the boundaries $\langle AB_iB_jB_k \rangle = 0$, that is the 3 lines i, j, k lie on the same plane.

For more than 3 points the $\langle AB_iB_jB_k \rangle > 0$ factorize and gives a partial ordering on the line

$$\langle AP^{\perp}B_{i}B_{j}\rangle > 0$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 15/17

plus a factor of 2 on the weight for each internal boundary. Solvable at all loops!

Maximal loop-loop cuts

Let's set also all $\langle AP^{\perp}B_{i}B_{j}\rangle = 0 \Rightarrow AB_{i} = AB_{j}$.

Conjecture

If we exhaust all $\langle AP^{\perp}B_iB_j \rangle = 0$ we always get the 3 - loop all-in-one-point-all-in-and-plane cut up geometry up to the weight.

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ 16/17

The weight is given by $2^{\# internal boundaries}$.

Conclusions

- We showed how to derive the geometry of a big class of boundaries of the amplituhedron.
- We computed one all-in-one-point-and-plane cuts for 4 point MHV at all loops.

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ● ⑦ Q @ 17/17

One can compute many more algorithmically

Conclusions

- We showed how to derive the geometry of a big class of boundaries of the amplituhedron.
- We computed one all-in-one-point-and-plane cuts for 4 point MHV at all loops.

<□ ▶ < @ ▶ < E ▶ < E ▶ E 9Q (* 17/17)</p>

One can compute many more algorithmically

Outlooks

- Compute some all-in-one-point cuts.
- Graphical-bootstrap of correlators from cuts (work in progress)

Conclusions

- We showed how to derive the geometry of a big class of boundaries of the amplituhedron.
- We computed one all-in-one-point-and-plane cuts for 4 point MHV at all loops.
- One can compute many more algorithmically

Outlooks

- Compute some all-in-one-point cuts.
- Graphical-bootstrap of correlators from cuts (work in progress)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 17/17