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Maximal loop-loop cuts 
from the Amplituhedron

Based on
G. D., P. Heslop, A. Stewart 2207.12464

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE Gabriele Dian
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Planar amplitudes integrands are top rational differential forms in
the loop variables.

Multiresidues of amplitude integrands
▶ are at the core of generalized unitarity techniques [Bern,

Dixon, Kossover],
▶ can be used as building block for recursion relations as BCFW

and more recently [Bourjaily,Caron-Huot]

The amplituhedron
Super amplitudes and their residues can be computed as the
canonical form of respectively the Amplituhedron and its
boundaries. [Nima, Trnka]
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Main points

• Cut’s Geometry: Derive the geometry of the boundaries of
the Amplituhedron corresponding to some loop-loop cuts.

• Computaing Cuts: Show a strategy to compute the cuts from
the geometry.

• Universality of Maximal Cuts: Show how many loop-loop
residues we can take and describe their universal geometry.
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Region variables

Planar integrands can be written using region variables

p1 p2

p3p4

x5x1

x2

x3

x4

The momenta flowing in the edges are equal to distances
between adjacent regions. Example:

p2
1 = (x2 − x1)2
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Points and Lines

To every region variable, we can associate a line in twistor space
that is a line in P3, aka Gr(2, 4).

Null-separated regions correspond to intersecting lines

The internal regions correspond to loop momenta and are usually
indicated with a pair of points AiBi
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Tree-level amplitudes poles are related to the boundaries of the
configurations space of points.

Loop integrand poles are related to the boundaries of the
configurations space of lines.

Very little is known of the configurations space of lines
New unforeseen “internal boundaries” appears deep in the loop
amplituhedron. (see Paul’s talk).
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The Amplituhedron
The 4-point MHV loop amplitude is a function of 4 points in P3

Z1, . . . , Z4 and L lines represented by pairs of points A1B1, · · · , ALBL.
Angle-bracket notation:

⟨AiBijk⟩ := det(AiBiZjZk), ⟨AiBiAjBj⟩ := det(AiBiAjBj)

The MHV loop amplituhedron A4,0,L [Arkani-Hamed, Thomas, Trnka]
is the space of oriented lines AiBi such that

⟨1234⟩ > 0,

⟨AiBi12⟩ > 0, ⟨AiBi23⟩ > 0, ⟨AiBi34⟩ > 0, ⟨AiBi14⟩ > 0,

⟨AiBi13⟩ < 0,

⟨AiBiAjBj⟩ > 0.

Useful notation for A4,0,L

AiBi ∈ A4,0,1 ∧ ⟨AiBiAjBj⟩ > 0
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2-loop cut

⟨A1B1A2B2⟩ → 0+

B1

B2•
•

A1

A2

Natural change of variable A := A1A2 ∩ A2B2 For L loops we define

A(L)
dc := ABi ∈ A4,0,1 ∀ i ≤ L

This residue is equal to a sum of factorized of 1-loop terms
[Arkani-Hamed, Langer, Yelleshpur Srikant, Trnka]
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Geometric factorization

The canonical form of the Cartesian product of geometries is
equal to the product of the canonical forms

Ω(X1 ⊗X1) = Ω(X1) ∧ Ω(X2)

A(L)
dc =

∪
i

ωi(A)
⊗
j

λi(Bj)

where ωi(A) is a tetrahedron and
λi(Bj) is a triangle.

The form will read

A(L)
dc =

∑
i

Ω(ωi)(A)
∏
j

Ω(λi)(Bj)
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New tree loops feature

•A1

•B1

• A3=A1+a3B1

•
B3

•
B2

• A2=A1+a2B1

⟨A2B2A3B3⟩ = (a3 − a2)⟨A1B1B2B3⟩ > 0

That corresponds to

((a3 − a2) > 0 ∧ ⟨A1B1B2B3⟩ > 0) ∨ ((a3 − a2) < ∧⟨A1B1B2B3⟩ < 0)
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Intersecting and sliding

We consider all loop-loop cuts that can eventually land on the
configuration where all loops intersect in one point.
Rule: No coplanar lines, that is no ⟨ABBB⟩ = 0

Li

Lj•

•

Lk

Li1

Li2

Lin
Lj1

Lj2

Ljm

•

•
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Rules for determining the geometry

When we intersect two lines AiBi, AjBj we just remove ⟨AiBiAjBj⟩ > 0,
and introduce an intersection point AiBi ∩ AjBj.

Lk

Li1

Li2

Lin
Lj1

Lj2

Ljm

•

•

Sliding produces two regions
with opposite orientations:

⟨AiBiAjBj⟩ > 0 → ⟨ABiBkBj⟩ > 0

and

⟨AiBiAjBj⟩ > 0 → ⟨ABiBkBj⟩ < 0
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A family of residues

Sliding order matters

L1

L4

L2

L3•

•

•

c2

c1

L1

L3

L2

•

•
c1

L4

•c2

Intersections instead commute.
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A triangle in a triangle

For the MHV amplitude, after we project through A, the Bi
geometry corresponds to points in a triangle.

B1

B2

B3

with ⟨B1B2B3⟩ > 0 or ⟨B1B2B3⟩ < 0
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All-in-on-point-and-plane cuts

Let’s study the boundaries ⟨ABiBjBk⟩ = 0, that is the 3 lines i, j, k lie
on the same plane.

B1 B2 B3B4

P

For more than 3 points the ⟨ABiBjBk⟩ > 0 factorize and gives a
partial ordering on the line

⟨AP⊥BiBj⟩ > 0

plus a factor of 2 on the weight for each internal boundary.
Solvable at all loops!
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Maximal loop-loop cuts

Let’s set also all ⟨AP⊥BiBj⟩ = 0 ⇒ ABi = ABj.

Conjecture
If we exhaust all ⟨AP⊥BiBj⟩ = 0 we always get the 3− loop
all-in-one-point-all-in-and-plane cut up geometry up to the weight.

The weight is given by 2#internal boundaries.
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Conclusions

▶ We showed how to derive the geometry of a big class of
boundaries of the amplituhedron.

▶ We computed one all-in-one-point-and-plane cuts for 4 point
MHV at all loops.

▶ One can compute many more algorithmically

Outlooks
▶ Compute some all-in-one-point cuts.
▶ Graphical-bootstrap of correlators from cuts (work in

progress)

Thanks!
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