• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •					0 0 0 0	0 0 0 0
						0 0 0 0	0 0 0 0
						0 0 0 0	0 0 0 0
				0 0 0 0 0 0	0 0 0	0 0 0 0	0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0					0 0 0 0	0 0 0 0
							0 0 0 0
					⊳		0 0 0 0
	RTICI F FFY	ΝΛΛ		TEG	R A	• • • •	o o o o
		• • • • • •	0 0 0		• • •	•••••	o o o o
• • • • • • • • • • • • • • • • • • •				o o o o o	• • •	0 0 0 0	0 0 0 0
BASED C	N ARXIV:2210,13505 WITH	J. HENN. A	, <mark>MÅT</mark> Ì.J.	ÅŠIĆ	o o o	0 0 0 0	0 0 0 0
		v /	0 0 0	0 0 0 0	o o o	0 0 0 0	0 0 0 0
• • • • • • • AND WORK IN PROGR	ESS WITH J. HENN, A. MAT	IJASIC, T.	PERARC), Y. ZHAN	G , Y .	XU° ° °	0 0 0 0
				• • • • •		0 0 0 0	0 0 0 0
						0 0 0 0	0 0 0 0
		0 0 0 0 0		0 0 0 0 0 0	0 0 0	0 0 0 0	0 0 0 0
			0 0 0	0 0 0 0 0	0 0 0	0 0 0 0	0 0 0 0
		0 0 0 0 0	o o o o		o o o	0 0 0 0	0 0 0 0
		0 0 0 0 0	o o o		o o o	o o o o	0 0 0 0
			o o o		• • •	o o o o	o o o o
		0 0 0 0 0	o o o o		• • •	o o o o	o o o o
	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	o o o o	o o o o o	• • •	0 0 0 0	o o o o
	• • • • • PRAGUE SPR		0 0				
		KSHOP	• •	***			
			o o o	* * *		E	erc
Ap. Dg > t t	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0	* *			
	MAY 17TH, 202	23 ° ° ° ′		^* <u></u> ★^^			
FÜR PHYSIK						European Rese Established by the Eur	earch Council

MOTIVATION

- Precision measurements have reached percent level: need two-loop integrals
- State-of-the-art: two-loop five-point Feynman integrals (five on-shell legs, four on-shell legs and one off-shell leg)
 [Gehrmann, Henn, Lo Presti '18; Abreu, Dixon, Herrmann, Page, Zeng '18; Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia '18; Abreu, Ita, Moriello, Page, Tschernow, Zeng '20; Abreu, Ita, Page, Tschernow '21]
- Very little is known about two-loop six-particle processes in general theories
- To understand their function space: find planar two-loop hexagon alphabet
- First time at six points: external kinematics satisfy Gram determinant constraint

NOTATION AND KINEMATICS

$$I^{d_0}(a_1,\ldots,a_{13}) = e^{2\epsilon\gamma_E} \int \frac{\mathsf{d}^{d_0-2\epsilon} l_1 \mathsf{d}^{d_0-2\epsilon} l_2}{i\pi^{(d_0-2\epsilon)}} \frac{1}{D_1^{a_1} \ldots D_{13}^{a_{13}}}$$

External momenta:

$$p_i^2 = 0, \quad i = 1, \dots, 6$$
 $\sum_{i=1}^6 p_i = 0$ $p_i \in \mathbb{R}^{D_{\text{ext}}}$

• For $D_{ext} > 4$, nine independent Mandelstam invariants

$$ec{v} = \{s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{61}, s_{123}, s_{234}, s_{345}\}$$

 $s_{ij} = (p_i + p_j)^2, \qquad s_{ijk} = (p_i + p_j + p_k)^2$

• For $D_{ext} = 4$, Gram determinant constraint

$$0 = G(p_1, p_2, p_3, p_4, p_5) = \det(p_i \cdot p_j), \qquad 1 \le i, j \le 5$$

CANONICAL DIFFERENTIAL EQUATION

• By choosing a UT basis, we find canonical differential equations [Henn '13]

- The alphabet \mathbb{A} encodes the singularities and functional structure of the integrals
 - Can be decomposed into even and odd letters

$$\searrow \quad \frac{P - \sqrt{Q}}{P + \sqrt{Q}}$$

DIFFERENTIAL EQUATION BLOCKS IN CANONICAL FORM

TWO-LOOP ALPHABET LETTERS

• From the knowledge of all even letters W_i and leading singularities $\sqrt{Q_k}$, we want to find all odd letters of the form:

$$W_{odd} = \frac{P - \sqrt{Q}}{P + \sqrt{Q}}$$

where
$$Q \in \{Q_i\} \cup \{Q_iQ_j\}$$

• Observation: if $W_{odd} \in \mathbb{A}$, it holds:

$$\left(P - \sqrt{Q}\right)\left(P + \sqrt{Q}\right) = c \prod_{i} W_{i}^{e_{i}}, \quad W_{i} \in \mathbb{A}_{even}$$

$$P(\vec{v})^{2} = Q(\vec{v}) + c \prod_{i} W_{i}^{e_{i}}$$

EXAMPLE: ODD LETTER CONSTRUCTION

• Consider the odd letters for the three-mass one-loop triangle:

$$\frac{P - \sqrt{\lambda(s_{12}^2, s_{34}^2, s_{56}^2)}}{P + \sqrt{\lambda(s_{12}^2, s_{34}^2, s_{56}^2)}}$$

where $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2ac - 2bc$

EXAMPLE: ODD LETTER CONSTRUCTION

• Consider the odd letters for the three-mass one-loop triangle:

$$\frac{P - \sqrt{\lambda(s_{12}^2, s_{34}^2, s_{56}^2)}}{P + \sqrt{\lambda(s_{12}^2, s_{34}^2, s_{56}^2)}} \quad \text{where} \quad \lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2ac - 2bc$$

- Easy to see that there are three simple ways to turn λ into a perfect square:

$$\lambda(s_{12}^2, s_{34}^2, s_{56}^2) + 4s_{12}^2s_{34}^2 = (s_{12} + s_{34} - s_{56})^2$$

 However, for embeddings in bigger alphabets, also the following is relevant:

$$\lambda + 4(s_{12}s_{56} - s_{12}s_{123} + s_{34}s_{123} - s_{56}s_{123} + s_{123}^2) = (s_{12} - s_{34} + s_{56} - 2s_{123})^2$$

TWO-LOOP ALPHABET LETTERS

• From the knowledge of all even letters W_i and leading singularities $\sqrt{Q_k}$, we want to find all odd letters of the form:

$$W_{odd} = \frac{P - \sqrt{Q}}{P + \sqrt{Q}}$$

where $Q \in \{Q_i\} \cup \{Q_iQ_j\}$

• Observation: if $W_{odd} \in \mathbb{A}$, it holds:

$$\left(P - \sqrt{Q}\right)\left(P + \sqrt{Q}\right) = c \prod_{i} W_{i}^{e_{i}}, \quad W_{i} \in \mathbb{A}_{even}$$

$$P(\vec{v})^{2} = Q(\vec{v}) + c \prod_{i} W_{i}^{e_{i}}$$

- Two-loop alphabet has 884 letters so far (436 even + 448 odd)
 - 324 odd letters constructed from factorization condition

• Imposing vanishing of spurious divergence implies above identity!

TAKING THE $D_{ext} \rightarrow 4$ limit for penta-tri sector

• On maximal cut, we have UT basis

$$\tilde{I} = \left\{ (2\epsilon - 1)\sqrt{Q_{18}} \xrightarrow{6} 1, 4\sqrt{Q_{27}} \xrightarrow{6} Q_{18} = G(p_1, p_2, p_3, p_5) \\ Q_{27} = \Delta_6 \right\}$$

• With PDE matrix:

$$A = \frac{1}{2} \begin{pmatrix} -3(\log W_1 + \log W_2 + \log W_{382}) - \log W_{388} + 8 \log W_{406} & \frac{1}{2} \log W_{795} \\ -6 \log W_{795} & \log W_1 + \log W_2 + \log W_{382} + 3 \log W_{388} - 8 \log W_{415} \end{pmatrix}$$

$$\lim_{D_{ext} \to 4 + \delta} W_{388} \to \delta, \qquad \lim_{D_{ext} \to 4 + \delta} W_{795} \to \delta$$

• Leads to identity:
$$0 = 2\tilde{I}_1 - \tilde{I}_2$$

OPEN QUESTIONS

- Two-loop UT basis beyond the maximal cut?
- Have we constructed the full alphabet? Are all letters needed?
 - Final proof will be given by the differential equation!
- Can we use the alphabet to bootstrap interesting quantities?
 - e.g. six-point Wilson loops with Lagrangian insertion or certain sixpoint integrals

Thank you! Questions?

0	0	•	•	0	0	0	•	0	• •	0	0	•	0	0	0	0	0	0																							0	0	0	0	0	• •	•
0	0	0	•	0	0	0	•	0	• •	0	0	•	0	0	0	0	0	0																							0	0	0	0	•	• •)
0	0	•	•	0	0	0	•	0	• •	0	0	•	0	0	0	0	0	0																						0	0	0	0	0	•	• •	1
0	0	0	•	0	0	0	•	0	• •	0	0	•	0	0	0	0	0	0																						0	0	0	0	0	•	• •	,
0	0	0	•	0	0	0	•	0	• •	0	0	•	0	0	0	0	0	0																					0	0	0	0	0	0	•	• •)
0	0	0	•	0	0	0	•	0	• •	0	0	0	0	0	0	0	0																						0	0	0	0	0	0	•	• •)
0	0	0	0	0	0	0	•	0	• •	0	0	0	0	0	0																							0	0	0	0	0	0	0	•	• •)
0	0	0	0	0	0	0	•	0	•	0	0	0	0	0																								0	0	0	0	0	0	0	•	• •)
0	0	0	0	0	0	0	•	0	• •	0	0	0	0	0																							0	0	0	0	0	0	0	0	0	• •	,
0	0	0	0	0	0	0	•	0	• •	0	0	0	0																								0	0	0	0	0	0	0	0	•	• •	,
0	0	0	0	0	0	0	0	0	0	0	0	0																								o o	0	0	0	0	0	0	0	0	0	• •	,
0	0	0	0	0	0	0	•	0	• •	0																									o (o o	0	0	0	0	0	0	0	0	•	• •)
0	0	•	0	0	0	•	•	0	0	0	0	0	0	0	0																		0		o (o o	0	0	0	0	0	0	0	•	•	• •)
0	0	•	B	Α	С	۰K	• _ (U٩	P	S	5 L		D	-	S	•																		0 0	o (o o	0	0	0	0	0	0	0	0	•	• •)
0	0	0	0	0	0	0	0	0																									0	0 0	b	0	0	0	0	0	0	0	0	0	•	• •)
0	0	0	0	0	0	0	0	0																							0	0	0	0 0	o o	o o	0	0	0	0	0	0	0	0	•	• •	,
0	0	0	0	0	0	0	0																								0	0	0	0 0	o o	o o	0	0	0	0	0	0	0	0	•	• •	•
0	0	0	0	0	0	0																								o	0	0	0	0 0	b (o o	0	0	0	0	0	0	0	0	•	• •	,
																															0	0	0	0 0	o o	o o	0	0	0	0	0	0	0	0	•	• •	,
																													0 0	0	0	0	0	0 0	o (• •	0	0	0	0	0	0	0	0	•	• •	,
																														o	0	0	0	0 0	o o	• •	0	0	0	0	0	0	0	0	•	• •	•
																												0	0 0	•	0	0	0	0 0	o (• •	0	0	0	0	0	0	0	0	•	• •	•
																											0	0	0 0	•	0	0	0	0 0	o (• •	0	0	0	0	0	0	0	0	0	• •	•
																											0	•	0 0	•	0	0	0	0 0	b (o o	0	0	0	0	0	0	0	•	•	• •	ľ
																										0	0	0	0 0	0	0	0	0	0 0	b	o o	0	0	0	0	0	0	0	•	•	• •	ł
																								0		0	0	•	0 0	o	0	0	0	0 0	b	o o	0	0	0	0	0	0	0	•	•	• •	ſ
																								0	0	0	0	•	0 0	•	0	0	0	0 0	b	0 0	0	0	0	0	0	0	0	•	•	• •	ľ
																								• •	0	0	0	0	0 0	•	0	•	•	0 0	0	• •	0	•	0	•	0	0	•	•	•	• •	,
																								• •	0	0	0	•	0 0	•	0	0	0	0 0	b (• •	0	•	0	0	0	0	•	•	•	• •	,
																							ہ د	0	0	0	0	0	0 0	•	0	0	0	0 0	b (0 0	0	0	0	0	0	0	0	0	•	• •	ï

RELATION TO DUAL CONFORMAL HEXAGON ALPHABET

 The dual conformal 9-variable (A3 cluster algebra) letters from N=4 sYM can be written as

$$u_1, \quad u_2, \quad u_3, \quad 1-u_1, \quad 1-u_2, \quad 1-u_3, \quad y_1, \quad y_2, \quad y_3$$

$$u_{1} = \frac{v_{1}v_{4}}{v_{7}v_{9}}, \quad u_{2} = \frac{v_{2}v_{5}}{v_{8}v_{7}}, \quad u_{3} = \frac{v_{3}v_{6}}{v_{9}v_{8}}, \quad \Delta = (1 - u_{1} - u_{2} - u_{3})^{2} - 4u_{1}u_{2}u_{3}$$
$$y_{1} = \frac{1 + u_{1} - u_{2} - u_{3} - \sqrt{\Delta}}{1 + u_{1} - u_{2} - u_{3} + \sqrt{\Delta}}, \quad y_{2} = \frac{1 + u_{2} - u_{3} - u_{1} - \sqrt{\Delta}}{1 + u_{2} - u_{3} - u_{1} + \sqrt{\Delta}}, \quad y_{3} = \frac{1 + u_{3} - u_{1} - u_{2} - \sqrt{\Delta}}{1 + u_{3} - u_{1} - u_{2} + \sqrt{\Delta}}$$

• They are contained in our alphabet:

$$u_{1} = \frac{W_{1}W_{4}}{W_{7}W_{9}}, \quad u_{2} = \frac{W_{2}W_{5}}{W_{7}W_{8}}, \quad u_{3} = \frac{W_{3}W_{6}}{W_{8}W_{9}} \quad 1 - u_{1} = \frac{W_{31}}{W_{7}W_{9}}, \quad 1 - u_{2} = \frac{W_{32}}{W_{7}W_{8}}, \quad 1 - u_{3} = \frac{W_{33}}{W_{8}W_{9}}$$
$$y_{1} = \frac{1}{W_{102}}, \quad y_{2} = \frac{1}{W_{103}}, \quad y_{3} = \frac{1}{W_{101}}$$