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Binary black hole merger in three phases:

I will focus on the  
conservative potential (figure from 1610.03567)

Motivation: gravitational waves

Inspiral phase: high experimental sentitivity ßà need theoretical precision
à errors accumulate
à analytic control possible
à important for LISA band
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Higher-spin 3pt amplitudes & Kerr BH 
spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 〈12〉2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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Natural higher-spin gravitational 3pt amplitudes: 

Arkani-Hamed, Huang, Huang (‘17)

Linearized energy-momentum tensor for Kerr source Vines (’17)

Non-minimal worldline action for Kerr: Levi, Steinhoff (‘15)

(spin-multipole expansion)

(b) (b)

−=

(a)

−=

Figure2:PictorialformofthebasiccolorandkinematicLie-algebraicrelations:(a)theJacobi
relationsforfieldsintheadjointrepresentation,and(b)thecommutationrelationforfieldsina
genericcomplexrepresentation.

DuetotheLiealgebraofthegaugesymmetry,colorfactorsobeysimplelinearrelations

arisingfromtheJacobiidentitiesandcommutationrelations,

f̃d̂âĉf̃ĉ̂bê−f̃d̂b̂ĉf̃ĉâê=f̃âb̂ĉf̃d̂ĉê

(tâ)k̂
ı̂(tb̂)̂

k̂
−(tb̂)k̂

ı̂(tâ)̂

k̂
=f̃âb̂ĉ(tĉ)̂

ı̂

}

⇒ci−cj=ck,(2.3)

andthisisdepicteddiagrammaticallyinfigure2.Theidentityci−cj=ckisunderstoodto
holdfortripletsofdiagrams(i,j,k)thatdifferonlybythesubdiagramsdrawninfigure2,

butotherwisehavecommongraphstructure.

Thelinearrelationsamongthecolorfactorsciimplythatthecorrespondingkinematic

coefficientsni/Diareingeneralnotunique,asshouldbeexpectedfromtheunderlyinggauge
dependenceofindividual(Feynman)graphs.

ItwasobservedbyBern,Carrascoandoneofthecurrentauthors(BCJ)[3],thatwithin

the(gauge)freedomofredefiningthenumeratorsthereexistparticularlynicechoices,such

thattheresultingnumeratorfactorsniobeythesamegeneralalgebraicidentitiesasthe
colorfactorsci.Thatis,thereisanumeratorrelationforeverycolorJacobiofcommutation

relation(2.45)andanumeratorsignflipforeverycolorfactorsignflip(2.2):

ni−nj=nk⇔ci−cj=ck,(2.4a)

ni→−ni⇔ci→−ci.(2.4b)

Amplitudesthatsatisfytheserelationsaresaidtoexhibitcolor/kinematicsduality.An

importantpointisthatanumeratorfactornienteringdifferentkinematicrelationsmaynot

takethesamefunctionalforminallsuchrelations;rather,momentumconservationand
changesofintegrationvariablesmustbeusedtoallignthemomentumassignmentbetween

thethreegraphsparticipatingintherelation.

Therelationsineq.(2.4)defineakinematicalgebraofnumerators,whichissuggestive

ofanunderlyingkinematicLiealgebra.WhilenotmuchisknownaboutthisLiealgebra,
whichshouldbeinfinite-dimensionalduetothefunctionalnatureofthekinematicJacobi

relations,inthespecialcaseoftheself-dualsectorofYMtheorythekinematicalgebrawas

showntobeisomorphictothatofthearea-preservingdiffeomorphisms[13].

7

1

2

3



root-Kerr gauge theory
Classical double copy à Kerr-Schild form

metric:

gauge field:

(Kerr, double copy)

(root-Kerr, single copy)

Monteiro, 
O’Connell (‘14)

Newman-Janis shift:

(Newman-Penrose curvature scalars)

à classical 3pt amplitudes

Guevara, Ochirov, Vines;
Arkani-Hamed, Huang, O'Connell; 
Guevara, Maybee, Ochirov, O'Connell, Vines



AHH amplitudes à Kerr  BH ?

where in general there are additional terms of O(p2−m2) in the numerator that

contribute off shell. These terms depend on the details of the Lagrangian formulation
of the theory.

For the case of spin-1/2 and spin-3/2, additional terms are not expected, and
the propagators are

∆(1/2)(ε, ε̄) = i
/p+m

p2 −m2
,

∆(3/2)(ε, ε̄) = i
(/p +m) ε.ε̄+ 1

3(/ε+
p·ε
m )(/p−m)(/̄ε+ p·ε̄

m )

p2 −m2
, (2.37)

with ε.ε̄ = εµ(ηµν− pµpν
m2 )ε̄ν . The propagators with free Lorentz indices can be obtained

by taking an appropriate number of derivatives ∂
∂εµ and ∂

∂ε̄ν that act on ∆(s+1/2)(ε, ε̄).
This will automatically symmetrize the Lorentz indices on each side of the propagator

matrix.

3 Higher-spin three-point amplitudes

We now consider amplitudes for a pair of spin-s particles using the massive spinor-
helicity formalism. To avoid displaying unimportant overall normalization factors in

the spinor-helicity formulae, we denote amplitudes with either straight or calligraphic
symbols. The calligraphic ones, A(1, 2, . . . , n) for gauge theory andM(1, 2, . . . , n) for
gravity, are more suitable for covariant formulae that use polarization vectors. The

straight ones, A(1, 2, . . . , n) and M(1, 2, . . . , n), are more suitable for spinor-helicity
expressions. Their relative normalizations are

A(1, 2, . . . , n) = (−1)!s"
(√

2e
)n−2

A(1, 2, . . . , n),

M(1, 2, . . . , n) = (−1)!s"
(κ

2

)n−2
M(1, 2, . . . , n).

(3.1)

where e is the gauge theory (electric) coupling, κ is the gravitational coupling, with
κ2 = 32πGN . The ceiling function #s$ takes into account phases that depend on the
spin of the massive particle, which appear due to our mostly-minus metric signature

choice. Furthermore, sometimes it is convenient to set e = 1 or κ = 1, in which case
the two normalizations simply differ by powers of

√
2 and signs.

3.1 Spinor-helicity three-point amplitudes

It was proposed by Arkani-Hamed, Huang and Huang [99] that the most natural
three-point amplitudes between two massive higher-spin particles and a gauge boson
should be the following maximally-chiral objects:

A(1φs, 2φ̄s, 3A+) = mx
〈12〉2s

m2s
, A(1φs, 2φ̄s, 3A−) =

m

x

[12]2s

m2s
(3.2)
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Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 〈12〉2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form
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where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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Spin-s gauge theory 3pt amplitudes

Spin-s gravitational 3pt amplitiudes: 
Arkani-Hamed, Huang, Huang. (‘17)

Q1: Where is the spin vector ?

Q2: Where is the exponential factor ?

Q3: What are the quantum theories ? (before classical limit)  



Quantum spin operator

Introduce projective 3-sphere coordinates 

parametrizes SU(2) ßà spin

Relation between classical spin vector and quantum spin:

massive 
spinor-helicity 
formalism

Transversality of spin vector:

Properties:

Equals an expectation value:

Gives spin operator:



Recap of massive spinor helicity

2.1 Massive spinor parametrization

Consider a four-dimensional momentum pµ that obeys the on-shell condition p2 = m2.
Let us decompose it in terms of the null vectors kµ, qµ,

pµ = kµ +
m2

2p · q q
µ , (2.1)

where we take qµ to be an arbitrary reference vector, and kµ is then defined by the
decomposition. Note that the decomposition implies the identity p · q = k · q.

Using the fact that k, q are null, we may now employ the massless spinor-helicity
formalism. First, we rewrite eq. (2.1) into bi-spinors by contracting the momenta
with σµ

αα̇ matrices,

σ · p = |k〉[k|+ m2

2p · q
|q〉[q| ≡ |pa〉[pa| . (2.2)

We intentionally suppress the (α, α̇) spinor indices of the Lorentz group SL(2,C) ∼
SO(1, 3). We then recognize that the two terms can be reinterpreted as the contrac-
tion of two massive spinors that carry a, b, . . . indices of the little group SU(2) ∼
SO(3). The massive spinors can be identified as

|pa〉 =
(

|q〉 m
〈k q〉

|k〉

)

, |pa] =
(

|k]
|q] m

[k q]

)

. (2.3)

The mirrored spinors 〈pa| and [pa| are obtained, as implied by the notation, by

transposing the massless spinors: |k〉→〈k|. Since the little group is SU(2), we lower
and raise those indices using the rules |pa〉 = εab|pb〉 and |pa〉 = εab|pb〉; that is, we
always multiply with the Levi-Civita symbols from the left. The antisymmetric Levi-

Civita symbols are normalized as ε12 = ε21 = 1. For real momentum p with E > 0,
m2 > 0, the angle and square spinors are complex conjugates of each other, up to

a similarity transform. More specifically, (|pa])∗ = Ω|pa〉, (|pa〉)∗ = ΩT |pa], where
Ω is a 2-by-2 unitary matrix. Because the massive on-shell spinors are related by

complex conjugation, one is justified to think of them as the two chiral components
of a massive Majorana spinor.

In general, we will consider amplitudes that depend on many momenta pµi , with

particle labels i = 1, . . . , n, which makes it convenient to simplify the notation by
only indicating the particle label inside the spinor

|ia〉 ≡ |pai 〉 , |ia] ≡ |pai ] . (2.4)

For each particle i we have the associated reference vector qµi and mass mi.

2.2 Bookkeeping of little-group indices, polarizations and projectors

It is convenient to define massive bosonic spinors that have no free little-group indices,

| i 〉 ≡ |ia〉zi,a , | i ] ≡ |ia]zi,a (2.5)
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Following AHH bold massive spinors ßà symmetrized little group indices

where zi,a = εab zbi are complex Grassmann-even auxiliary variables that transform

as spinors under the little group. Because we take the z variables to be complex,
the two chiral spinors are no longer related by complex conjugation, and thus the

spinors (2.5) can be interpreted as the chiral components of a massive Dirac spinor.
The spinor products are antisymmetric under label swaps,

〈12〉 = −〈21〉 , [12] = −[21] , (2.6)

implying that spinor products with repeated indices vanish, e.g. 〈11〉 = 0. Many

other identities familiar from the massless spinor-helicity formalism still hold, such
as Schouten and Fierz identities:

〈12〉〈34〉+ 〈23〉〈14〉+ 〈31〉〈24〉 = 0 , 〈1|σµ|2]〈3|σµ|4] = 2〈13〉[42] . (2.7)

Because all indices are absent and the spinors are bosonic, we can now take arbitrary
powers of the spinors, e.g.

〈12〉2s = degree-4s polynomial in (za1 , z
a
2) , (2.8)

which makes it possible to write down analytic functions with the spinors as ar-

guments. As a first example, consider the polarization vector for a massive vector
boson, which we define as

εµi =
〈i|σµ|i]√

2mi

=
[i|σ̄µ|i〉√

2mi

= (z1i )
2εµi,− −

√
2z1i z

2
i ε

µ
i,L − (z2i )

2εµi,+ . (2.9)

Here εi,± = εi,±(ki, qi) are standard (massless) polarization vectors for the null mo-

menta ki, with qi as the reference vector that appeared in eq. (2.1), and εi,L is a longi-
tudinal polarization. Explicit expressions can be given, e.g.

√
2εµi,+ = 〈qi|σµ|ki]/〈qiki〉

and εi,L = ki/mi − miqi/(2pi · qi). Note that the massive polarization εµi is still a

null vector, since ε2i ∝ 〈i i〉 [i i], and 〈i i〉 = [i i] = 0. Also, since the z variables are
complex, the polarization εµi naturally describes a complex massive vector boson. In

the massless limit, the longitudinal polarization will behave as εµL ∼ pµ/m and is thus
singular, whereas the transverse polarizations ε± are well defined. It is interesting
to note that the need of an arbitrary reference vector q to describe a massless polar-

ization vector is easy to understand from the ambiguity of the parametrization (2.1)
we used for the massive spinors.

To check the completeness relation for the polarization vectors, we need to in-
troduce polarizations that are complex conjugated,

ε̄µi =

(

[i|σµ|i〉
)∗

√
2mi

≡ −(z̄1i )
2εµi,− +

√
2z̄1i z̄

2
i ε

µ
i,L + (z̄2i )

2εµi,+ , (2.10)

where we have used (za)∗ = z̄a, (za)∗ = −z̄a and (εµi,−)
∗ = εµi,+. We then get the

following non-zero Lorentz product

εi · ε̄i = −(zai z̄i,a)
2 , (2.11)
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Analytic functions of spinors now possible:
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menta ki, with qi as the reference vector that appeared in eq. (2.1), and εi,L is a longi-
tudinal polarization. Explicit expressions can be given, e.g.

√
2εµi,+ = 〈qi|σµ|ki]/〈qiki〉

and εi,L = ki/mi − miqi/(2pi · qi). Note that the massive polarization εµi is still a

null vector, since ε2i ∝ 〈i i〉 [i i], and 〈i i〉 = [i i] = 0. Also, since the z variables are
complex, the polarization εµi naturally describes a complex massive vector boson. In

the massless limit, the longitudinal polarization will behave as εµL ∼ pµ/m and is thus
singular, whereas the transverse polarizations ε± are well defined. It is interesting
to note that the need of an arbitrary reference vector q to describe a massless polar-

ization vector is easy to understand from the ambiguity of the parametrization (2.1)
we used for the massive spinors.

To check the completeness relation for the polarization vectors, we need to in-
troduce polarizations that are complex conjugated,

ε̄µi =

(

[i|σµ|i〉
)∗

√
2mi

≡ −(z̄1i )
2εµi,− +

√
2z̄1i z̄

2
i ε

µ
i,L + (z̄2i )

2εµi,+ , (2.10)

where we have used (za)∗ = z̄a, (za)∗ = −z̄a and (εµi,−)
∗ = εµi,+. We then get the

following non-zero Lorentz product

εi · ε̄i = −(zai z̄i,a)
2 , (2.11)
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Massive polarizations are null vectors

Higher-spin states automatically symmetric, transverse, traceless 

where the sign can be traced to the mostly-minus metric ηµν = diag(1,−1,−1,−1).

If we contract the little-group indices using a derivative operator, we get the
completeness relation for the transverse part of the Lorentz group,

− 1

4

(

∂2

∂zi,a∂z̄ai

)2

εµi ε̄
ν
i = ηµν − pµi p

ν
i

m2
i

. (2.12)

The result should be familiar as the massive spin-1 projector, or as the tensor struc-
ture of the massive spin-1 propagator. We will see that a direct generalization of
the derivative operator introduced here will be convenient for computing state sums

that contribute to amplitude factorization residues or loop-level unitarity cuts, for
any spin states.

2.3 Bosonic higher-spin states

Polarization tensors for bosonic spin-s fields are simply products of s polarization
vectors

εµ1µ2···µs

i ≡ εµ1

i εµ2

i · · ·εµs

i = degree-2s polynomial in zai . (2.13)

Polarization tensors are automatically symmetric, traceless and transverse. Transver-
sality pi,µ1

εµ1µ2···µs

i = 0 follows from the fact that 〈ia|pi|ib] ∝ εab, which vanishes after

contracting with the symmetric object zai z
b
i .

Contracting two CPT-conjugate polarizations gives the little-group completeness

relation
εµ1µ2···µs

i ε̄i,µ1µ2···µs = (−1)s(zai z̄i,a)
2s , (2.14)

where again the sign is needed due to our mostly-minus signature. For spin 2, we
get the following completeness relation for the Lorentz structure:

1

(4!)2

(

∂2

∂zi,a∂z̄ai

)4

εµνi ε̄ρσi =
1

2

(

η̃µρη̃νσ + η̃µση̃νρ − 2

3
η̃µν η̃σρ

)

, (2.15)

where η̃µν ≡ ηµν− pµi p
ν
i

m2
i

is a shorthand notation for the spin-1 projector that appeared

in eq. (2.12). The above eq. (2.15) is the expected state projector for the five physical
degrees of freedom of a massive spin-2 field (e.g. massive graviton).

For general bosonic spin s, we have the following state sum to evaluate:

(−1)s

(2s)! 2

(

∂2

∂zi,a∂z̄ai

)2s

εµ1µ2···µs

i ε̄ν1ν2···νsi =
1

s!
(η̃µ1ν1 η̃µ2ν2. . .η̃µsνs + perms) + . . . ≡ P $µ$ν

(s)

(2.16)
Here P $µ$ν

(s) is a compact notation for the state projector of an on-shell symmetric and

traceless spin-s state. (See, e.g., ref. [143] for early work on projectors.) Considered
as a matrix, the projector should satisfy

P(s)P(s) = P(s) , P T
(s) = P(s) , trP(s) = 2s+1 , pµi

P(s) = 0 ,

P(s)

∣

∣

µi↔µj
= P(s) , ηµiµj

P(s) = 0 , ηµsνsP(s) =
2s+1

2s−1
P(s−1) , (2.17)
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AHH amplitudes = Kerr BHs

(original argument: Guevara, Ochirov, Vines)

Relate in/out states by Lorentz transf.

(b) (b)

−=

(a)

−=

Figure2:PictorialformofthebasiccolorandkinematicLie-algebraicrelations:(a)theJacobi
relationsforfieldsintheadjointrepresentation,and(b)thecommutationrelationforfieldsina
genericcomplexrepresentation.

DuetotheLiealgebraofthegaugesymmetry,colorfactorsobeysimplelinearrelations

arisingfromtheJacobiidentitiesandcommutationrelations,

f̃d̂âĉf̃ĉ̂bê−f̃d̂b̂ĉf̃ĉâê=f̃âb̂ĉf̃d̂ĉê

(tâ)k̂
ı̂(tb̂)̂

k̂
−(tb̂)k̂

ı̂(tâ)̂

k̂
=f̃âb̂ĉ(tĉ)̂

ı̂

}

⇒ci−cj=ck,(2.3)

andthisisdepicteddiagrammaticallyinfigure2.Theidentityci−cj=ckisunderstoodto
holdfortripletsofdiagrams(i,j,k)thatdifferonlybythesubdiagramsdrawninfigure2,

butotherwisehavecommongraphstructure.

Thelinearrelationsamongthecolorfactorsciimplythatthecorrespondingkinematic

coefficientsni/Diareingeneralnotunique,asshouldbeexpectedfromtheunderlyinggauge
dependenceofindividual(Feynman)graphs.

ItwasobservedbyBern,Carrascoandoneofthecurrentauthors(BCJ)[3],thatwithin

the(gauge)freedomofredefiningthenumeratorsthereexistparticularlynicechoices,such

thattheresultingnumeratorfactorsniobeythesamegeneralalgebraicidentitiesasthe
colorfactorsci.Thatis,thereisanumeratorrelationforeverycolorJacobiofcommutation

relation(2.45)andanumeratorsignflipforeverycolorfactorsignflip(2.2):

ni−nj=nk⇔ci−cj=ck,(2.4a)

ni→−ni⇔ci→−ci.(2.4b)

Amplitudesthatsatisfytheserelationsaresaidtoexhibitcolor/kinematicsduality.An

importantpointisthatanumeratorfactornienteringdifferentkinematicrelationsmaynot

takethesamefunctionalforminallsuchrelations;rather,momentumconservationand
changesofintegrationvariablesmustbeusedtoallignthemomentumassignmentbetween

thethreegraphsparticipatingintherelation.

Therelationsineq.(2.4)defineakinematicalgebraofnumerators,whichissuggestive

ofanunderlyingkinematicLiealgebra.WhilenotmuchisknownaboutthisLiealgebra,
whichshouldbeinfinite-dimensionalduetothefunctionalnatureofthekinematicJacobi

relations,inthespecialcaseoftheself-dualsectorofYMtheorythekinematicalgebrawas

showntobeisomorphictothatofthearea-preservingdiffeomorphisms[13].

7

1

2

3

AHH factor à exponential of spin operator:

Quantum Kerr and root Kerr 3pt à Quantum Newman-Janis shift

with ring-radius operator:

à see talk by Cangemi



Kerr Compton amplitudes

Candidate Compton amplitudes via BCFW:

Let us check if the two contributions responsible for the quantum mismatch

between eq. (3.24) and eq. (3.26) are perhaps related. We find the relation

εs2 ·
( i

m2
p1 ·M · k

)

· εs1 = s(ε1 · ε2)s−1ε2 ·
( 1

m2
(k · Ŝ)2

)

· ε1 , (3.28)

and for s = 1 the two expressions indeed conspire in eq. (3.26) with numerical
coefficients 1/2− 1. However, this still does not add up to the unit coefficient of this
term in eq. (3.24), which through s ≤ 5/2 should give the unique theories that satisfy

tree-level unitarity. That said, the terms proportional to p1 ·M ·k or to ε2 · (k · Ŝ)2 ·ε1
are subleading in the classical limit and thus the quantum difference is irrelevant

for the purpose of describing astrophysical black holes. In conclusion, this analysis
confirms that eq. (3.26) and eq. (3.24) are classically equivalent and match the Kerr

black-hole dynamics.

4 Spinor-helicity Compton amplitudes for s ≤ 5/2

In ref. [99], three-point higher-spin amplitudes, which we discussed in Section 3, were

used together with BCFW recursion [56, 152] to construct candidates for the the
Compton amplitudes with opposite-helicity photons/gravitons. In a later reference
the equal-helicity Compton amplitudes were obtained in the same way [117]. Let us

start by inspecting the photon amplitudes

A(1φs, 2φ̄s, 3A+, 4A+) = i
〈12〉2s[34]2

m2s−2t13t14
, (4.1a)

A(1φs, 2φ̄s, 3A−, 4A+) = i
[4|p1|3〉2−2s([41]〈32〉+ [42]〈31〉)2s

t13t14
, (4.1b)

where s12 = (p1 + p2)2 and tij = (pi + pj)2 − m2. As was discussed in ref. [99],
the opposite-helicity amplitude is well behaved for s ≤ 1, and starting at s = 3/2

it develops a spurious pole corresponding to the factor [4|p1|3〉2−2s. This pole is
unphysical, and must be canceled by adding a contact interaction to the Compton

amplitude, such that it has a compensating spurious pole. Exactly how to do this
in a unique way has not yet been firmly established. In contrast, we see that the
equal-helicity Compton amplitude does not have a spurious pole for any spin. And

this suggests that it should not be corrected by contact terms, although a priori it
cannot be ruled out that it receives corrections that are manifestly free of momentum

poles.
Next, let us quote the corresponding candidate Compton amplitudes for gravity,

which can be obtained via BCFW recursion in the same way [99, 117],

M(1φs, 2φ̄s, 3h+, 4h+) = i
〈12〉2s[34]4

m2s−4s12t13t14
, (4.2a)

M(1φs, 2φ̄s, 3h−, 4h+) = i
[4|p1|3〉4−2s([41]〈32〉+ [42]〈31〉)2s

s12t13t14
. (4.2b)
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the opposite-helicity amplitude is well behaved for s ≤ 1, and starting at s = 3/2

it develops a spurious pole corresponding to the factor [4|p1|3〉2−2s. This pole is
unphysical, and must be canceled by adding a contact interaction to the Compton

amplitude, such that it has a compensating spurious pole. Exactly how to do this
in a unique way has not yet been firmly established. In contrast, we see that the
equal-helicity Compton amplitude does not have a spurious pole for any spin. And

this suggests that it should not be corrected by contact terms, although a priori it
cannot be ruled out that it receives corrections that are manifestly free of momentum

poles.
Next, let us quote the corresponding candidate Compton amplitudes for gravity,

which can be obtained via BCFW recursion in the same way [99, 117],

M(1φs, 2φ̄s, 3h+, 4h+) = i
〈12〉2s[34]4
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, (4.2a)
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oppsite helicity case:

same helicity case:

Needed for NLO calculations:



root-Kerr Compton amplitudes

Candidate Compton amplitudes via BCFW:

Again, for             spurious pole                  à need corrections

12

3 4

Ochirov, HJ

AHH

oppsite helicity case:

same helicity case:

Not needed for physics purposes, but provide useful toy model!

à See talk by Cangemi



Which quantum EFTs give Kerr amplitudes ?



EFTs behind root-Kerr

where in general there are additional terms of O(p2−m2) in the numerator that

contribute off shell. These terms depend on the details of the Lagrangian formulation
of the theory.

For the case of spin-1/2 and spin-3/2, additional terms are not expected, and
the propagators are

∆(1/2)(ε, ε̄) = i
/p+m

p2 −m2
,

∆(3/2)(ε, ε̄) = i
(/p +m) ε.ε̄+ 1

3(/ε+
p·ε
m )(/p−m)(/̄ε+ p·ε̄

m )

p2 −m2
, (2.37)

with ε.ε̄ = εµ(ηµν− pµpν
m2 )ε̄ν . The propagators with free Lorentz indices can be obtained

by taking an appropriate number of derivatives ∂
∂εµ and ∂

∂ε̄ν that act on ∆(s+1/2)(ε, ε̄).
This will automatically symmetrize the Lorentz indices on each side of the propagator

matrix.

3 Higher-spin three-point amplitudes

We now consider amplitudes for a pair of spin-s particles using the massive spinor-
helicity formalism. To avoid displaying unimportant overall normalization factors in

the spinor-helicity formulae, we denote amplitudes with either straight or calligraphic
symbols. The calligraphic ones, A(1, 2, . . . , n) for gauge theory andM(1, 2, . . . , n) for
gravity, are more suitable for covariant formulae that use polarization vectors. The

straight ones, A(1, 2, . . . , n) and M(1, 2, . . . , n), are more suitable for spinor-helicity
expressions. Their relative normalizations are

A(1, 2, . . . , n) = (−1)!s"
(√

2e
)n−2

A(1, 2, . . . , n),

M(1, 2, . . . , n) = (−1)!s"
(κ

2

)n−2
M(1, 2, . . . , n).

(3.1)

where e is the gauge theory (electric) coupling, κ is the gravitational coupling, with
κ2 = 32πGN . The ceiling function #s$ takes into account phases that depend on the
spin of the massive particle, which appear due to our mostly-minus metric signature

choice. Furthermore, sometimes it is convenient to set e = 1 or κ = 1, in which case
the two normalizations simply differ by powers of

√
2 and signs.

3.1 Spinor-helicity three-point amplitudes

It was proposed by Arkani-Hamed, Huang and Huang [99] that the most natural
three-point amplitudes between two massive higher-spin particles and a gauge boson
should be the following maximally-chiral objects:

A(1φs, 2φ̄s, 3A+) = mx
〈12〉2s

m2s
, A(1φs, 2φ̄s, 3A−) =

m

x

[12]2s

m2s
(3.2)
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spin-0:

spin-1/2:

spin-1:

Identify EFTs from covariant formulas:

(scalar)

(fermion)

(W-boson)

general spin-s given as a generating function:

For s > 1 à higher-derivative HS effective theories (no massless limit)

spin-3/2:

(gravitino)

Chiodaroli, 
HJ, Pichini



Kerr/root-Kerr double copy

spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 〈12〉2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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Preferred decomposition                                 give fewest derivatives :

From double-copy structure, we can infer: 

For s > 2  Kerr à higher-derivative HS EFTs (no massless limit)
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HJ, Pichini

Cangemi, 
Chiodaroli,HJ, 
Ochirov, 
Pichini,
Skvortsov



Low-spin Compton double copies
Kerr amplitudes for                  admit Compton double copy (also n-points)

Lagrangians unique: no new interaction terms beyond cubic order

Can be used for                 PM/PN calculations

Need new principles to fix interactions of the HS theories!

are turned into cubic interactions with the help of some auxiliary field1 the duality is
not inherited from the Feynman rules beyond four points. Since individual Feynman di-

agrams are not gauge invariant this observation is not in contradiction with the duality.
Indeed, the cubic-graph decomposition (2.1) is not unique because of the Jacobi-identity
constraints satisfied by the color factors. This implies that the numerators possess a

shift freedom that we refer to as generalized gauge freedom,

ni → ni +∆i , where

(2n−5)!!
∑

i=1

∆ici
Di

= 0 . (2.4)

This includes the usual gauge transformations that leaves the amplitude invariant

εµ(p) → εµ(p) + pµ, and generalizes it by allowing for any functions ∆i that leaves
the amplitude invariant. The color-kinematics duality imply that starting from some

generic cubic-graph representation of the amplitude, one can find some generalized
gauge transformation that gives kinematic numerators that obey the duality.

At tree level it is convenient work with a basis of BCJ numerators. By going to

the color-kinematics-dual version of a Del-Duca-Dixon-Maltoni (DDM) [78, 79] multi-
peripheral basis, all numerators can be expressed using (n − 2)! permutations of the

following graph,

n(σ) ≡ n
(

σ1, σ2, σ3, . . . , σn−1, σn

)

≡ n

(

σnσ1

σn−1· · ·σ3σ2

)

, (2.5)

and typically we fix σ1 = 1 and σn = n, which gives the basis with (n − 2)! elements.

And the color-ordered tree amplitude is then a sum over these (n− 2)! numerators,

Atree
n (ρ1, ρ2, . . . , ρn) =

∑

σ∈Sn−2

m(ρ|σ)n(σ) (2.6)

where m(ρ|σ) is called the propagator matrix [80]. It is the same matrix as describes
doubly color-ordered amplitudes in the bi-adjoint φ3 theory [81–85]. This matrix is

related (by a pseudoinverse) to the Kawai-Lewellen-Tye (KLT) matrix [20, 48, 49].

2.2 The Monteiro-O’Connell construction

The kinematic algebra underlying the color-kinematics duality was first systematically

studied by Monteiro and O’Connell in ref. [71]. They concluded that the self-dual Yang-
Mills sector (which only gives non-zero amplitudes for the all-plus-helicity sector at one

loop [86]) automatically obeys a kinematic algebra. Interactions in this sector can be

1Cubic interactions are obtained by the replacement Tr([Aµ, Aν ]2) → − 1
2 (B

µν)2+Tr([Aµ, Aν ]Bµν).
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Higher-spin (HS) theories



What special about the low-spin EFTs ?
Kerr (root-Kerr) EFTs for
à well-behaved massless limit
à exhibits gauge symmetry (SSB)

Furthermore: satisfy a current constraint

(b) (b)

−=

(a)

−=

Figure2:PictorialformofthebasiccolorandkinematicLie-algebraicrelations:(a)theJacobi
relationsforfieldsintheadjointrepresentation,and(b)thecommutationrelationforfieldsina
genericcomplexrepresentation.

DuetotheLiealgebraofthegaugesymmetry,colorfactorsobeysimplelinearrelations

arisingfromtheJacobiidentitiesandcommutationrelations,

f̃d̂âĉf̃ĉ̂bê−f̃d̂b̂ĉf̃ĉâê=f̃âb̂ĉf̃d̂ĉê

(tâ)k̂
ı̂(tb̂)̂

k̂
−(tb̂)k̂

ı̂(tâ)̂

k̂
=f̃âb̂ĉ(tĉ)̂

ı̂

}

⇒ci−cj=ck,(2.3)

andthisisdepicteddiagrammaticallyinfigure2.Theidentityci−cj=ckisunderstoodto
holdfortripletsofdiagrams(i,j,k)thatdifferonlybythesubdiagramsdrawninfigure2,

butotherwisehavecommongraphstructure.

Thelinearrelationsamongthecolorfactorsciimplythatthecorrespondingkinematic

coefficientsni/Diareingeneralnotunique,asshouldbeexpectedfromtheunderlyinggauge
dependenceofindividual(Feynman)graphs.

ItwasobservedbyBern,Carrascoandoneofthecurrentauthors(BCJ)[3],thatwithin

the(gauge)freedomofredefiningthenumeratorsthereexistparticularlynicechoices,such

thattheresultingnumeratorfactorsniobeythesamegeneralalgebraicidentitiesasthe
colorfactorsci.Thatis,thereisanumeratorrelationforeverycolorJacobiofcommutation

relation(2.45)andanumeratorsignflipforeverycolorfactorsignflip(2.2):

ni−nj=nk⇔ci−cj=ck,(2.4a)

ni→−ni⇔ci→−ci.(2.4b)

Amplitudesthatsatisfytheserelationsaresaidtoexhibitcolor/kinematicsduality.An

importantpointisthatanumeratorfactornienteringdifferentkinematicrelationsmaynot

takethesamefunctionalforminallsuchrelations;rather,momentumconservationand
changesofintegrationvariablesmustbeusedtoallignthemomentumassignmentbetween

thethreegraphsparticipatingintherelation.

Therelationsineq.(2.4)defineakinematicalgebraofnumerators,whichissuggestive

ofanunderlyingkinematicLiealgebra.WhilenotmuchisknownaboutthisLiealgebra,
whichshouldbeinfinite-dimensionalduetothefunctionalnatureofthekinematicJacobi

relations,inthespecialcaseoftheself-dualsectorofYMtheorythekinematicalgebrawas

showntobeisomorphictothatofthearea-preservingdiffeomorphisms[13].
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Connected to tree-level unitarity constraint;

Chiodaroli, 
HJ, Pichini

longitudinal modes suppressed in low-mass (high-energy) limit 
Porrati et al.



Current constraint for s=3/2, 5/2

The current constraint  (+ derivative power counting) gives unique
amplitudes and EFT Lagrangians up to spin-3/2 root-Kerr  

and also unique spin-5/2 Kerr EFT:

Chiodaroli, 
HJ, Pichini



Using HS gauge invariance
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, SkvortsovConsider spin-2 root-Kerr case:

physical field: Stückelberg fields:

Imposing a linearized massive higher-spin gauge transformation:

Makes sure that: 
à DOFs are correct, 
à small-mass limit better behaved than naively expected 

gauge parameter



Massive Ward identities
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, SkvortsovWe write down ansatz for off-shell interactions:

and constrain them using Ward identities 

where the vertices corresponding to gauge parameters are: 

à 3pt amplitude:
unique after current constraint: 



General spin-s EFTs
Consider tower                            of HS fields and gauge parameters:

Gauge transformation:

Minimal Lagrangian:

Gauge-fixing fn:

Feynman-gauge Lagr:

Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

Zinoviev (2001)

(traceless)(double-traceless)



Non-minimal interactions
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

3pt vertex:

Ward identities:

Constraints imposed: 

Gives unique Kerr and root-Kerr 3pt amplitudes (matching AHH) 



HS perturbation theory
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

Feynman-gauge propagator for any field obtained as generating fn:

Calculations expected to simplify in Feynman gauge:

Focus on root-Kerr Compton amplitude, we obtain

with a polynomial:

and variables

contact term



4pt contact terms
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsovroot-Kerr Compton amplitude: 

4pt Ward Id leaves 2 parameters unfixed at s = 2

Spin-s amplitude in terms of ring-radius operator:

à See talk by Cangemi



Conclusion: Kerr dynamics proposal
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

Checks:à uniquely predicts previously known Kerr 3,4pt amplitudes 

à gives non-trivial constraints on unknown Compton contact terms

We propose that Kerr dynamics is non-trivially constrained by

Massive Higher Spin Gauge Symmetry

Further checks needed: 
à Analysis of classical limit à Cangemi
à Comparison with Teukolsky equation (BH-PT)
à Newman-Janis shift at Compton level ? 
à Uniqueness of EFTs ?

Possible future directions: implications for quantum BHs, 
à including absorption and emission effects


