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Roadmap

+ Spiritus Movens
» observables in QFT surprisingly simple!
» what do amplitudes look like—functionally?
» why is perturbation theory so hard?

—and how can we make it easier?

+ Generalized Unitarity: a modern perspective
- stratifying theories and stratified Feynman integrand bases
- what makes for a good Feynman integral (basis)?

+ Prescriptivity, Purity, and Polylogarithmicity

- Impurities, Calabi-Yau Geometries,...; tensions and resolutions



What Form do Observables Take?

+In a general (say, 4d) QFT, it would have recently been expected

by most that observables took the following general form:
(general dimension d: 2+ |d/2])
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What Form do Observables Take?

+ Unfortunately, many pesky counterexamples were to be found:
| Bloch, Kerr, Vanhove; Broadhurst;. .. |

elﬁw C( lOg) % C | Doran, Harder, Thompson (2019)]
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Why is Perturbation Theory so Hard?'a

+ Feynman integrals (esp. with scalar numerators) are horrible
» difficult to integrate, explosive in number, non-physical,...

+ Regularization obscures symmetries (+is technically difficult)

+ Most familiar mater integrand bases are the unnecessarily bad:
» don’t satisfy nice/canonical differential equations
» contain multiple elliptic(+worse(!)) geometries,
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How can We Make it Easier?

+ Use unitarity to choose the nicest/easiest integrals to integrate
(of course, integration “ease” changes with time and new methods)

» search for as many pure integrals as you can
—those which satisfy nice (canonical) differential equations

Definition: a function f(s) is called pure if:
» there exists a grading of functions by “transcendental” weight

» any derivative of f(s) is strictly lower in weight
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Unitarity-Based Strategies
& the stratification of loop integrands




Generalized Unitarity (in brief)

+ The basic idea behind unitarity-based methods is that any
Feynman integrand is a rational differential form on loop momenta

» as such, it can be expanded into a basis B of such forms:
.A = Z &ibi
b*eB

+ For any fixed QFT (spacetime dimension, particle content),
the space of all amplitude integrands is finite-dimensional

» all-multiplicity amplitudes can be expressed in a finite basis!

+ Key observation: viewed as a potential element of some basis,
every Feynman integrand can be interesting!

» Why not try to find the best/easiest integrands—and use these?
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Stratifying Integrand Bases

+ Suppose that a basis could be carved up into subspaces
(by any, arbitrary means):
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*+ Such a stratification could be given by “power-counting”
(some proxy for) ultraviolet behavior

» recently, we gave an intrinsically graph-theoretic definition of
power-counting for non-planar integrand bases
|JB, Herrmann, Langer, Trnka (2020) |
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Stratifying Integrand Bases

+ Suppose that a basis could be carved up into subspaces
(by any arbitrary means):
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+ ;Is it possible to stratify integrand bases by physical structure?

(max—weight) P (next—to—max—weight) S...H (rational)
|JB, Kalyanapuram |
(pOlYlOgS) D (elhptlc—logs) &, (K37S) Coinie [JB,Langer, Zhang]
|JB, Herrmann, Langer, Patatoukos, et al |
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Prescriptive Integrand Bases

+ How generalized unitarity has been used to match amplitudes:
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with coefficients ¢; determined by cuts: a spanning set of cycles{{}; }

+ A basis is called prescmptwe 1t th i ZE:g
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Strategies for Building Bases

+ Given some integrand basis (or strata thereof), one should
diagonalize the space of integrands according to a

homological/cohomological pairing;:
» choose a spanning-set of compact, max-dimensional contours {2
» normalize and diagonalize the basis by the requirement

E : : “residues”
= 03 ();: 41-dimensional compact contours < eliiptic periods

{2;

+ This trivializes the representation of amplitudes:

» the coefficient of any amplitude in this basis will simply be the
on-shell function evaluated on the contour (a leading singularity)

+ Choosing a maximal set of IR /UV-divergence-probing contours
ensures(?) that the basis is split into finite/ divergent subspaces

K3 periods, etc.



Prescriptivity and Purity

+ Prescriptive integrand bases are naturally pure

i (pure polyloganthms) —|— f(p) (other pure polylogamthms)

/ CLS 2 other pure polylogamthms)
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Stratifying Rigidity

+Is it possible to stratify integrands according to rigidity?
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a Virtuous Cycle
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