

Roadmap

- + Spiritus Movens
 - observables in QFT surprisingly simple!
 - what do amplitudes look like—functionally?
 - why is perturbation theory so hard?

—and how can we make it easier?

- + Generalized Unitarity: a modern perspective
 - stratifying theories and stratified Feynman integrand bases
 - what makes for a good Feynman integral (basis)?
- + Prescriptivity, Purity, and Polylogarithmicity
 - Impurities, Calabi-Yau Geometries,...; tensions and resolutions

What Form do Observables Take?

◆In a general (say, 4d) QFT, it would have recently been expected

by most that observables took the following general form:
$$A = A^{\text{tree}} + \hbar A^{(L=1)} + \hbar^2 A^{(L=2)} + \dots + \hbar^L A^{(L)} + \dots$$
rational + (weight-2) polylogs) + (weight-1) + \dots \text{polylogs} + \dots \text{planar } \mathcal{N} = 4?

coefficients: weight-0, rational ben-directlssignanteeritieariant, etc.)

What Form do Observables Take?

Unfortunately, many pesky counterexamples were to be found:

elliptic(-log) (CY₃

[Bloch, Kerr, Vanhove; Broadhurst;...]

[Doran, Harder, Thompson (2019)]

sunrises:

- ◆ In every instance known, the Calabi-Yau itself is very simple:
 - degree-(d+1) hypersurface in \mathbb{P}^d (or multiple-cover thereof)
- *kinematic data (momenta/masses) control the moduli
 - often extremely singulation vacuum graph evaluating to a K3 period

SS

(2018)

Brown, Schnetz (2018)

tardigrades:

Why is Perturbation Theory so Hard?

- → Feynman integrals (esp. with scalar numerators) are horrible
 - difficult to integrate, explosive in number, non-physical,...
- *Regularization obscures symmetries (+is technically difficult)
- *Most familiar mater integrand bases are the unnecessarily bad:
 - don't satisfy nice/canonical differential equations
 - contain multiple elliptic(+worse(!)) geometries,
 - **)** ...

$$\mathbf{I}_{a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9} = e^{2\gamma_E \epsilon} \int \int \frac{d^D k_1 d^D k_2}{(i\pi^{d/2})^2} \frac{P_8^{-a_8} P_9^{-a_9}}{P_1^{a_1} P_2^{a_2} P_3^{a_3} P_4^{a_4} P_5^{a_5} P_6^{a_6} P_7^{a_7}}$$

How can We Make it Easier?

- ◆ Use unitarity to choose the nicest/easiest integrals to integrate (of course, integration "ease" changes with time and new methods)
 - search for as many pure integrals as you can —those which satisfy nice (canonical) differential equations

Definition: a function f(s) is called *pure* if:

- there exists a grading of functions by "transcendental" weight
- any derivative of f(s) is strictly lower in weight

e.g. $g(s) \log(f(s))$ would be impure $\frac{\partial}{\partial s} \Big[g(s) \log \big(f(s) \big) \Big] = g'(s) \log \big(f(s) \big) + g(s) f'(s) / f(s)$ rithms & illiptic curves

er, Patatoukos (2021); ...

Unitarity-Based Strategies & the stratification of loop integrands

Generalized Unitarity (in brief)

- *The basic idea behind unitarity-based methods is that any *Feynman integrand* is a rational differential form on loop momenta
 - as such, it can be expanded into a basis B of such forms:

$$\mathcal{A} = \sum_{\mathfrak{b}^i \in \mathfrak{B}} a_i \mathfrak{b}^i$$

- * For any fixed QFT (spacetime dimension, particle content), the space of all amplitude integrands is finite-dimensional
 - · all-multiplicity amplitudes can be expressed in a finite basis!
- ◆ Key observation: viewed as a potential element of some basis, every Feynman integrand can be interesting!
 - Why not try to find the best/easiest integrands—and use these?

Stratifying Integrand Bases

Suppose that a basis could be carved up into subspaces (by any, arbitrary means):

$$\mathcal{A} = \sum_{\mathfrak{b}^i \in \mathfrak{B}} a_i \mathfrak{b}^i$$

$$\mathfrak{B} = \bigoplus_{p=0}^{\infty} \mathfrak{B}_p \qquad \mathcal{A} = \sum_p \mathcal{A}_p \quad \text{with} \quad \mathcal{A}_p = \mathcal{A} \cap \mathfrak{B}_p = \sum_{\mathfrak{b}^i_p \in \mathfrak{B}_p} a_i \mathfrak{b}^i_p$$

- ◆ Such a stratification could be given by "power-counting" (some proxy for) ultraviolet behavior
 - recently, we gave an intrinsically graph-theoretic definition of power-counting for *non-planar* integrand bases

[JB, Herrmann, Langer, Trnka (2020)]

Stratifying Integrand Bases

 Suppose that a basis could be carved up into subspaces (by any arbitrary means):

$$\mathcal{A} = \sum_{\mathfrak{b}^i \in \mathfrak{B}} a_i \mathfrak{b}^i$$

$$\mathfrak{B} = \bigoplus_{p=0}^{\infty} \mathfrak{B}_p \qquad \mathcal{A} = \sum_p \mathcal{A}_p \quad \text{with} \quad \mathcal{A}_p = \mathcal{A} \cap \mathfrak{B}_p = \sum_{\mathfrak{b}^i_p \in \mathfrak{B}_p} a_i \mathfrak{b}^i_p$$

→ ¿Is it possible to stratify integrand bases by physical structure?

```
(max-weight) \oplus (next-to-max-weight) \oplus ... \oplus (rational)
```

(polylogs)
$$\oplus$$
 (elliptic-logs) \oplus (K3's) \oplus . . .

[JB, Kalyanapuram]

[JB, Langer, Zhang]

JB, Herrmann, Langer, Patatoukos, et al

(finite)
$$\oplus$$
 (**Upvertigent**) \oplus (**IRe** divergent) \oplus ... \oplus ($\log(m)$ -divergent) \oplus ($\log(m)^2$ -divergent) \oplus ...

Prescriptive Integrand Bases

+ How generalized unitarity has been used to match amplitudes:

$$\mathcal{A} = \sum a_{i} \mathcal{I}_{i}^{0}$$

with coefficients c_i determined by cuts: a spanning set of cycles $\{\Omega_j\}$

$$\mathcal{I}_{j} \coloneqq \sum_{i} \left\{ \left(\mathbf{M}^{-} \Sigma \right) \right\}_{i,j} \oint_{\Omega_{j}} \left\{ \left(\mathbf{M}^{-} \Sigma \right) \right\}_{i,j} \oint_{\Omega_{j}} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \right\}_{i} = \int_{\Omega_{j}} \mathcal{A} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \right\}_{i} = \int_{\Omega_{j}} \mathcal{A} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \right\}_{i} = \int_{\Omega_{j}} \mathcal{A} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \right\}_{i} = \int_{\Omega_{j}} \mathcal{A} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \right\}_{i} = \int_{\Omega_{j}} \mathcal{A} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \right\}_{i} = \int_{\Omega_{j}} \mathcal{A} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \right\}_{i} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \left(\mathbf{M}^{-1} \right)_{i,j} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \left(\mathbf{M}^{-1} \right)_{i,j} \left(\mathbf{M}^{-1} \right)_{i,j} \left(\mathbf{M}^{-1} \right)_{i} \left(\mathbf{M}^{-1} \right)_{i,j} \left\{ \left(\mathbf{M}^{-1} \right)_{i,j} \left(\mathbf{M}^{-1} \right)_{i$$

*A basis is called *prescriptive* if it is the cohomological dual of a spanning set of cycles $\{\Omega_j\}$

Strategies for Building Bases

◆ Given some integrand basis (or strata thereof), one should diagonalize the space of integrands according to a

homological/cohomological pairing:

- choose a spanning-set of compact, max-dimensional contours Ω_i

• choose a *spanning-set* of **compact, max-dimensional** contours
$$\Omega_j$$
• normalize and diagonalize the basis by the requirement
$$\int_{\Omega_j} \mathfrak{b}_i = \delta_{ij} \qquad \Omega_j : \text{4L-dimensional compact contours} \begin{cases} \text{"residues" elliptic periods} \\ \text{K3 periods, etc.} \end{cases}$$

- → This trivializes the representation of amplitudes:
 - the coefficient of any amplitude in this basis will simply be the on-shell function evaluated on the contour (a leading singularity)
- Choosing a maximal set of IR/UV-divergence-probing contours ensures(?) that the basis is split into finite/divergent subspaces

Prescriptivity and Purity

◆ Prescriptive integrand bases are naturally pure

Stratifying Rigidity

◆ Is it possible to stratify integrands according to rigidity?

Amplitudes: a Virtuous Cycle

Compute Something

beyond the reach of recent imagination

Exploit Simplicity

to build more powerful computational technology

beyond expectations

study it, understand it, & explore consequences

Thank you!