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a gradual exploration of soliton dynamics in one-dimensional scalar field theories



PART I:

Scattering of kinks in a field theory
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Classical scalar 
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Canonical kink

ϕK = tanh ( x − x0 − vt

1 − v2 )

E = Mγ P = Mγv M = 4/3

Q = ∫ dx j0 =
ϕ(∞) − ϕ(−∞)

2
jμ =

1
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εμν∂νϕ ∂μ jμ = 0

Behaves as a relativistic massive particle. Stability guaranteed by 
conservation of topological charge. 
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Normal modes
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A `map’ of scatterings
ϕ(0,t) Bouncing 

windows

Bion chimneys

Critical velocity:

vcrit ≈ 0.26

Minimal velocity:

vmin ≈ 0.18
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We present new numerical and theoretical results concerning kink-antikink collisions in the classical (nonintegrable) q~4 
field model in one-dimensional space. Earlier numerical studies of such collisions revealed that, over a small range of initial 
velocities, intervals of initial relative velocity for which the kink and antikink capture one another alternate with regions for 
which the interaction concludes with escape to infinite separation. We describe the results of a new high-precision computer 
simulation that significantly extends and refines these observations of escape "windows". We also discuss a simple theoretical 
mechanism that appears to account for this structure in a natural way. Our picture attributes the alternation phenomenon 
to a nonlinear resonance between the orbital frequency of the bound kink-antikink pair and the frequency of characteristic 
small oscillations of the field localized at the moving kink and antikink centers. Our numerical simulation also reveals long-lived 
small-scale oscillatory behavior in the time dependence of kink and antikink velocity following those collisions that do not lead 
to capture. We account for this fine structure in terms of the interaction between kink (and antikink) motion and small 
amplitude "radiation" generated during and after the collision. We discuss possible implications of our results for physical 
systems. 

1. Introduction 

Over the past  several years it has become in- 
creasingly apparen t  that  spatially localized, non-  
linear e x c i t a t i o n s - " s o l i t a r y  waves"  - contr ibute  
significantly to the behavior  o f  a wide variety o f  
natural  systems, f rom organic polymers  and bio- 
logical structures th rough  plasmas to quantized 
fields [1]. Yet, despite the clear impor tance  and 
frequent analytic accessibility o f  these solitary 
wave excitations, their interactions, which can 
control  m a n y  features o f  the dynamics  o f  these 
systems, are in general poor ly  unders tood.  

To be sure, in some cases systems can be mod-  
eled by equat ions  in which the solitary waves are 
"sol i tons"  in the strict sense [1, 2]. In  these models,  
an infinite number  o f  conservat ion laws lead to the 
complete integrability o f  the equat ions and so 
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constrain the dynamics  that  these interactions are 
essentially trivial [1, 2]; solitons pass th rough  each 
other with only a "phase  shift" or  " t ime delay"  
[1, 2] and the entire interaction can be described 
analytically. A celebrated example o f  this class o f  
models, and one which we shall later use for  
comparison,  is the s ine-Gordon  equation,  

O:u(x, t) O2u(x, t) 
~t 2 ~X 2 - -  + sin u(x, t) = 0 ,  (1.1) 

for which the static single kink (S) and anti-kink 
(~) soliton solutions can be written as 

Us = 2re - ug--- 4 tan-l{e(X-x0)} . (1.2) 

More  commonly ,  the underlying models  do not  
contain  strict solitons. Either there is some physical 
p e r t u r b a t i o n - a  defect, an impurity,  or  a weak 
coupl ing to another  s y s t e m - w h i c h  destroys the 
complete integrability, or  the "ba re "  model  itself is 
simply not  integrable [3]. In these cases, interesting 
and highly nontrivial  interactions can occur.  Since 
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FIG. 4: Modern renderings of the results of Fig. 3 showing (a) results of PDE simulations, (b) zoomed-in view of the dashed
box above it, demonstrating fractal-like structure, (c) equivalent image from the qualitative ODE model, (d) equivalent image
generated by discrete map approximation to ODE model; adapted with permission from [31].

exposition, they worked in this paper with an idealized ODE model that retained the essential dynamical features of
Sugiyama’s ODE system, while having a somewhat simpler structure. Such a map reproduces in great detail much of
the fractal structure seen in the ODE model; see Fig 4(d).

In addition to noticing the problem with the a5 term and correcting it, Weigel’s group pointed out that the
qualitative and semi-quantitative match disappears when the corrected form of a5 is used [40–42]. They further
showed, to make matters worse, that the disagreement between ODE and PDE results only increases when higher
order terms neglected in (23) are included. One final problem makes make matters even gloomier, the so-called null-
vector singularity. The internal mode (15) moves in a potential defined by the kink. However at X = 0 the term (20)
representing the kink and antikink in the more general ansatz (22) vanishes, rendering the concept of an internal
mode meaningless. This fact arises in the context of the evolution equations by making the mass matrix associated
with the dynamical evolution singular when X = 0. Such a singularity is absent in the original PDE and is a mere
side e↵ect of the ODE reduction method; Caputo et al. recognized this problem in the early 1990’s and showed how
to remove the singularity via a nonlinear change of variables [12, 13].

To avoid such issues, Weigel’s group [40–42] proposed the following modified ansatz in the variational trial function:

u = uK(x�X) + uK̄(x+X)� tanh(qX) + [A�(x+X) +B�(x�X)] . (25)

This introduces a repulsive potential in the vicinity of X ! 0, which, in turn, precludes the kink and antikink from
hitting the singularity at X = 0. Of course, this now adds an artificial potential and q becomes a tunable parameter
which must be chosen optimally in order to optimize the fidelity of the reduced model to the original PDE. This can
be done in a variety of ways, including selecting q to capture the right PDE outgoing velocity, or in order to capture
the right number of bounces, or to possibly minimize the distance from the PDE kink-antikink center trajectory, or
satisfy some other suitable cost function criterion. Whichever way is selected though cannot bypass the fact that this
is a phenomenological and seemingly artificial inclusion that cannot be made systematic.

Remarkably, this suggests that despite a tremendous e↵ort and 40 years of significant developments, we are still
missing a quantitative understanding of the relevant phenomenology of what is arguably the simplest non-integrable
collision dynamical model (the �

4 model), in the context of the simplest type of coherent structures (heteroclinic,
real-valued kinks with only one internal mode). We highlight this because the examples in the following section are
more elaborate and have more complex and tunable features. This appears to be a disaster, but we choose, instead,
to view it as an opportunity.

Clearly, we have amassed a tremendous amount of experience about the relevant phenomenology. The fractal-like
structure of multi-bounce windows is well-established, and we know that it arises due to the (nearly) reversible transfer
of energy between translational and vibrational modes. This is known to be due to the internal mode. Yet, we still
lack a systematically-derived model that quantitatively characterizes this structure.

Perhaps a relevant suggestion in this direction is a beyond-two-mode ansatz that properly incorporates not only the
translational and internal modes, but also the potential of the kink to radiate energy through modes of the continuous
spectrum. This irreversible transfer to background modes is one of the significant features lacking in all of the earlier

Four Decades of Kink Interactions in Nonlinear Klein-Gordon Models:
A Crucial Typo, Recent Developments and the Challenges Ahead

P. G. Kevrekidis1, ⇤ and R.H. Goodman2
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The study of kink interactions in nonlinear Klein-Gordon models in 1 + 1-dimensions has a time-
honored history. Until a few years ago, it was arguably considered a fairly mature field whose
main phenomenology was well understood both qualitatively and at least semi-quantitatively. This
consensus was shattered when H. Weigel and his group established that the e↵ective model that had
allowed this detailed understanding contained an all-important typo. Remarkably, they found that
correcting this error wipes out both the quantitative and qualitative agreement and, in fact, leads to
additional problems. We summarize the history of the subject from the early studies, up to Weigel’s
work and reflect on where these recent developments leave our understanding (which, quantitatively,
is close to square one!). Importantly, we stress a number of emerging additional directions that have
arisen in higher-order power law models and speculate on the associated significant potential for
future work.

I. PREAMBLE TEASER: A MISTAKE!

Intriguingly, mathematics and science occasionally benefit significantly from a mistake that propels an area forward.
Arguably, the most famous such example is the mistake in Poincaré’s entry in the competition to construct a convergent
series solution to the three-body gravitational problem, sponsored by King Oscar II of Sweden and Norway. After
accepting the prize, Poincaré discovered a significant problem with his calculations. This, in turn, led him to discover
the phenomena of sensitive dependence on initial conditions and chaos. Diacu and Holmes beautifully chronicle this
story in [20] and we recommend it to anyone working in Dynamical Systems, as it describes, e↵ectively, the genesis
of the field.

Our exposition is centered around another mistake of this kind. It, in fact, a appears far more innocuous-looking, as
it only concerns an apparent typographical error. Yet, it has proved so detrimental that it has set a seemingly mature
and well-understood field in complete disarray: much of the qualitative and semi-quantitative theory can, remarkably,
no longer be considered applicable (except in a phenomenological way). But let us go back to the beginning.

II. IN THE BEGINNING, THERE WAS INTEGRABILITY. . .

In the 1970’s , the discovery of the magical-seeming theory of completely integrable nonlinear waves revolutionized
the study of nonlinear waves and led to a Steele Prize for its founders [1]. The centerpiece of this theory, the inverse
scattering transform (IST), has since been summarized in numerous books [2, 5, 23]. A major consequence of this
theory is that the interaction of solitary waves is perfectly elastic in integrable field theories, most notably in the
many 1+1 dimensional examples. Solitary waves in such systems are called solitons and emerge from collisions with
their form and velocity unchanged, modulo a so-called phase shift (a displacement from their undisturbed trajectory).
Relevant examples include nonlinear Klein-Gordon equations such as the famous sine-Gordon (sG) equation [18, 21]

utt = uxx � sin(u), (1)

which arises in models of superconducting Josephson junctions, coupled torsion pendula, and surfaces of constant
negative curvature (among many other applications). Remarkably, similar behavior arises in the universal nonlinear
Schrödinger equation [4, 39] used to model fluids and superfluids, optics and plasmas, and many other applications.
Note that x and t subscripts will be used hereafter to denote space and time partial derivatives, while u will be used
to denote the spatio-temporally dependent field.

⇤Electronic address: kevrekid@math.umass.edu
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Qualitative understanding

of bouncing as resonant 


energy-transfer

ϕbkg = tanh(x + X(t)) − tanh(x − X(t)) − 1 + A(t)(b1(x + X(t)) + b1(x − X(t)))

14 D.K. Campbell et al./ Resonance structure in kink antikink interactions in ~p4 theory 

Expanding the r ight-hand side o f  (3.26) in powers 
o f  0 and retaining only the leading order,  one 
obtains 

0 ~ 2 /x f l  + 4//2 . (3.27) 

The desired estimate, 0 ~< 2, follows immedi- 
ately, and f rom the empirical fact that  0 appears  to 
saturate the bound,  one concludes that/3 ,~ 1. With 
/3 = 0, it is apparen t  that  (3.26) has 0 = 2g/3 ~ 2.1 
as its only solution between zero and g. Thus  the 
theory accounts  for the observed result that  there 
is only one smooth  " two-b ou nc e"  window for each 
integer n. 

Finally, we refer the reader to fig. 8 for a more  
direct check o f  the crucial assumpt ion of  nearly 
conservative transfer o f  energy between the shape 
and translational  modes.  The horizontal  axis in 
this figure represents incoming kink speed; the 
vertical axis represents the ratio o f  ou tgoing  to 
incoming speeds, for those initial speeds that  do 
not  lead to the KI~ capture.  The approximat ion  o f  
conservative transfer relied on in this subsection 
implies that  each peak to the left o f  v = vc has a 
max imum value close to unity, as can be seen to be 
the case. 
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Fig. 8. The ratio of the (time-averaged- see section 4) kink 
speed after a KI~ collision to the initial speed, as a function of 
the initial velocity. Note the relatively elastic nature of the 
reflections below v c. 

4. Fine structure in ~b(O, t) and vf 

4.1. B a c k g r o u n d  

In the preceding sections we have focussed pri- 
marily on the resonance windows and in part icular  
on the critical role o f  the shape mode  oscillations 
in determining these resonances. With  few excep- 
tions, we have neglected the role o f  the " rad ia t ion"  
emitted by the collisions, and we have treated the 
final kink velocity, vf, as if it were a constant  in 
time. In this section, we will correct  these omissions 
by discussing in detail the role o f  radiat ion in K ~  
collisions and by describing some interesting "fine 
s t ructure"  in the time dependence o f  the final 
velocity. We shall see that  these effects are related. 

With regard to the resonance phenomenon ,  radi- 
at ion plays the impor tan t  role o f  an energy "s ink" ,  
essentially removing energy from the K K  trans- 
lation and shape modes  in a manner  that  precludes 
the retransfer to the bound  KI~ pair. As we have 
argued previously, this provides a natural  limit to 
the total number  o f  observable windows of  a given 
bounce number.  In fig. 9 we show how, at a time 
T = 95 units after the first KI~ collision, the initial 
K K  kinetic energy is distributed a m o n g  the KI~ 
kinetic energy, shape mode  energy, and radiation.* 
We see that, except for the highest velocities, the 
shape mode  does absorb  most  o f  the lost kinetic 
energy. Nonetheless,  the radiat ion modes  clearly 
are excited in the collisions. 

Before discussing this radiat ion in detail, let us 
first describe the (related) "fine s t ructure"  in the 
final kink velocity, yr. This "fine s tructure" is 

* Since the different modes among which the energy is 
distributed represent linear modes around a single kink, there 
is clearly some ambiguity in extracting the energy sharing from 
the numerical solution to the full nonlinear equation. As we are 
only interested in the rough partitioning of energy, it is sufficient 
for us to adopt the following prescription: (1) the kinetic energy 
of the K and I( is Mvf 2, where vf is the average final velocity; 
(2) the energy in the region beyond 5 units from the kink is 
called radiation; and (3) the remaining energy is taken to be in 
the shape mode. This slightly overestimates the energy in the 
shape mode because it includes a small amount of decay 
radiation in the immediate vicinity of the wobbling kinks. 
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Collective Coordinate Models
Idea #1: Engineering CCM:  
Sculpting the configuration 
space so that only the most 
relevant configurations for a 
given problem are included.

Idea #2: Agnostic CCM:  
Triangulating the entire 

configuration space. No prior 
insight. General tool.

Applied with great success to 
KK scattering in various models

V(ϕ) = { 1
2 (1 − ϕ2)2,

1
2

ϕ2(1 − ϕ2)2, 2 sin2(ϕ/2)}

Multikink scattering in the ϕ6 model revisited
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Antikink-kink (K̄K) collisions in the ϕ6 model exhibit resonant scattering although the ϕ6 kinks do not
support any bound states to which energy could be transferred. In P. Dorey et al. [Kink-Antikink Collisions
in the ϕ6 Model, Phys. Rev. Lett. 107, 091602 (2011)] it was conjectured that, instead, energy is transferred
to a collective bound mode of the full K̄K configuration. Here we present further strong evidence for this
conjecture. Further, we construct a collective coordinate model (CCM) for K̄K scattering based on this
collective bound mode trapped between the K̄K pair which allows us to reproduce the full dynamics of K̄K
scattering with striking accuracy. We also study kink-antikink (KK̄) scattering and its description by a
CCM. In this case a significant role of radiation is discovered.

DOI: 10.1103/PhysRevD.106.125003

I. INTRODUCTION

Topological solitons are spatially localized, stable sol-
utions of nonlinear field equations which carry a nonzero
topological charge [1–3]. The quantitative and sometimes
even the qualitative understanding of their interactions is far
from satisfactory in many cases. Since solitons exist both in
fundamental theories (e.g., sphalerons or monopoles in the
electroweak theory) aswell as in numerous effectivemodels,
a comprehensive understanding of their interactions is vital
not only for a deeper insight into the mathematical structure
of the theories but also for applications.
There are three main contributions to solitonic

interactions.
First, two solitons at a finite distance can act on each

other with a static force. This force can be attractive

(as typically happens for a kink-antikink pair) or repulsive.
In some particular cases, the so-called Bogomol’nyi-
Prasad-Sommerfeld (BPS) models [4], there is no static
force between the constituent solitons in a multisoliton
state [5,6]. There are famous examples of this in higher
dimensions such as the Abelian Higgs model at critical
coupling or BPS monopoles [7–9], but they also exist in
impurity-deformed [10,11] or multifield models in (1þ 1)
dimensions [12–15].
Second, the dynamics may be significantly affected by

the excitation of internal degrees of freedom (DoF). These
are often massive normal or quasinormal modes supported
by solitons, found in linear perturbation theory. Later on we
will see, however, that other possibilities also play a very
important role. A well-known example for the impact of
internal DoF on soliton dynamics is the so-called reso-
nance phenomenon which is responsible for the fractal
structure observed in the final state production in kink-
antikink (K̄K) collisions in various (1þ 1) dimensional
solitonic models [16–18]. Here, during the collision, the
initial kinetic energy of the incoming kink and antikink is
transferred to internal DoF. Then, it can be transferred back
to the kinetic DoF, allowing for the reappearance of the
solitons in the final state. However, it is also possible that a
significant fraction can be kept in the internal DoF, not
allowing the solitons to escape, which eventually leads to
their complete annihilation. Both scenarios occur in a
chaotic manner, resulting in the well-known fractal pattern.
This mechanism has been recently confirmed in KK̄
scattering in the ϕ4 theory by a derivation of a collective
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Tailor-made tools for specific problems.

Mechanization:

ϕ(x, t) ≡

Relativistic moduli space for kink collisions
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The moduli space approximation to kink dynamics permits a relativistic generalization if the Derrick
scaling parameter is used as a collective coordinate. We develop a perturbative approach to the resulting
relativistic moduli space by expanding the Derrick scaling parameter about unity and treating the higher-
order Derrick modes as new degrees of freedom. This approach allows us to resolve (coordinate)
singularities order by order and systematically incorporates relativistic corrections perturbatively in
kink scattering. It gives an excellent description of kink-antikink collisions in ϕ4 field theory already
at first order and at higher order reproduces the fractal structure in the formation of the final state with an
error of only 4%.

DOI: 10.1103/PhysRevD.105.065012

I. INTRODUCTION

Topological solitons [1–3] are solutions of nonlinear
field equations possessing, at first glance, two quite
opposed features. On the one hand, they are particlelike
objects, whose energy density is localized in a certain
region of space. On the other, they carry a topological
charge, a quantity characterizing a solution globally, that
depends on the field behavior at infinity. Partly owing to
this juxtaposition of short-range and long-range features,
the dynamics of topological solitons is quite involved and
leads to complex patterns of final states in scattering
processes. Except in the rare cases of integrable theories,
many aspects of soliton scattering are still far from being
fully understood. Among these is the fractal velocity
dependence of the final state in kink-antikink collisions,
associated with the resonant coupling of translational

motion to oscillatory modes [4–20], which can be normal
modes or quasinormal modes [21] hosted by free solitons or
the internal modes hosted by ephemeral configurations
occurring during the collision [22,23]. Also intriguing is
the recently discovered spectral wall phenomenon [24,25],
caused by the transition of a normal mode into the con-
tinuum spectrum as solitons approach each other. Finally,
there is the famous, long-standing problem of the soliton
resolution conjecture [26,27].
One method to reduce the complexity of topological

soliton dynamics is to construct a collective coordinate
model (CCM). CCM dynamics is sometimes referred to as
moduli space dynamics. In this approximation, a field
theory Lagrangian L½ϕ" that incorporates infinitely many
field degrees of freedom is truncated to a dynamical system
L½X" with finitely many collective coordinates Xi,
i ¼ 1;…; N, also called moduli. Despite this rather drastic
simplification, under certain circumstances, the CCM
accurately describes the full soliton dynamics because only
a subset of field configurations plays an important role,
while the rest may be neglected.
The moduli space manifold M offers a more global

perspective than the local collective coordinates Xi defined
on it. In the cases we consider,M has a Riemannian metric
inherited from the kinetic term of the field theory
Lagrangian and a potential inherited from the remaining
terms including the gradient term. As we will see below,
with the obvious choice of collective coordinates for
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ϕM(x, Xa) ≡

General-purpose CCM ?

Mechanization of scalar field theory in (1+1)-dimensions: BPS mech-kinks and their
scattering

Filip Blaschke,1, ⇤ Ondřej Nicolas Karṕı̌sek,2, † and Lukáš Rafaj2, ‡
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We present an updated version of a general-purpose collective coordinate model that aims to fully
map out the dynamics of a single scalar field in (1+1)-dimensions. This is achieved by a procedure
that we call a ‘mechanization’: we reduce the infinite number of degrees of freedom down to a finite
and controllable number by chopping the field into flat segments connected via joints. In this paper,
we introduce two new ingredients to our procedure. The first is a manifestly BPS mechanization in
which BPS mech-kinks saturate the same bound on energy as their field-theoretical progenitors. The
second is allowing the joints to ‘switch’, leading to an extended concept of the e↵ective Lagrangian,
through which we describe direct collisions of mech-kinks and anti-kinks.

Keywords: BPS, kinks, collective coordinate model, mechanization

I. INTRODUCTION

Field theories in (1+1)-dimensions with disconnected
vacua support topological solitons – kinks – that are
stable, particle-like objects. Kinks (and their higher-
dimensional relatives) are relevant in many areas of con-
temporary physics, including cosmology, condensed mat-
ter and particle physics [1–3].

The collisions of solitons have become a major avenue
for theoretical exploration of the inner workings of non-
linear field dynamics. Indeed, during collisions, the non-
linearity is ‘switched on’ only intermittently and with an
intensity that can be tuned, among other parameters, by
the initial velocities of the impactors. The holy grail of
soliton dynamics would be the ability to predict – given
the initial state of solitons and the model at hand – the
outcome of any collision.

Although the kink-anti-kink (KK̄) scattering have
been studied since the late 70-ties [4–8] the true quan-
titative understanding of their main characteristics has
been achieved only recently [9–17] (see also references in
[18]).

A hallmark feature of KK̄ collisions is the bouncing
phenomenon. It has been long since understood as a
resonant transfer of kinetic energy to and from colliding
solitons into localized modes of the field. In the case of
�4 kink, they are the shape modes residing on the kinks
themselves [10], while for �6 model, a delocalized mode
emerges in between the K̄K pair [13].

In Fig. 1, we showcase the evolution of the central field
value �(x = 0, t) as a function of time and initial velocity
of the KK̄ configuration in the �4 model. This picture
demonstrates the intricate dependence of the collision’s
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outcome on the initial velocity. More precisely, we see
that the bouncing happens only in certain windows that
occur below the critical velocity vcrit ⇡ 0.26 and above
vmin ⇡ 0.18. In between the bouncing windows there are
the so-called ‘bion chimneys’ where the KK̄ pair form
a long-living, quasi-periodic state that slowly decays via
emission of radiation.

Figure 1. Evolution of the center field value �(x = 0, t) of
KK̄ configuration for a range of initial velocities in the �4

model.

Both quantitative and qualitative understanding of
this phenomenology is commonly pursued through the
so-called Collective Coordinate Models (CCMs). This
approach aims to reduce the infinitely-dimensional dy-
namics of the field theory down to a few most relevant de-
grees of freedom. The strategy is to select a background
ansatz – a continuous family of curves �bkg(x; {Xa(t)})
controlled by a given number of parameters Xa that may
vary with time. For a relativistic field theory with a sin-
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The ‘mechanization’ is a procedure of replacing a scalar field in 1+1 dimensions with a piece-wise
linear function, i.e. a finite graph consisting of N joints (vertices) and straight segments (edges). As
a result, the field theory is approximated by a sequence of algebraically tractable, general-purpose
collective coordinate mechanical models. We observe the step-by-step emergence of dynamical ob-
jects and associated phenomena as the N increases. Mech-kinks and mech-oscillons – mechanical
analogs of kinks and oscillons (bions) – appear in the simplest models, while more intricate dynam-
ical patterns, such as bouncing phenomenon and bion pair-production, emerge gradually as decay
states of high N mech-oscillons.
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I. INTRODUCTION

Scattering of solitons provides a unique window to
the inner workings of non-linear field theories. Even in
the case of the simplest solitons – kinks – the rich phe-
nomenology that we see has not been completely under-
stood despite four decades of theoretical research [5–18].

The prototypical non-linear field theory is the �4

model with a single scalar field and double-well poten-

tial V (�) = 1
2

�
1 � �2

�2
, where the kink solution has an

especially simple form: �K(x) = tanh(x). Numerical in-
vestigations of kink (K) anti-kink (K̄) collisions reveal
an intricate pattern of possible outcomes [5–8, 15, 17]: i)
Above the critical velocity vcrit ⇡ 0.26, the colliding pair
is immediately reflected and escapes to infinity. ii) Be-
low this threshold, the solitons sometimes form a ‘bound
state’ (bion) that slowly decays to the vacuum via the
emission of radiation. iii) Before final reflection and es-
cape to infinity, the kink and anti-kink bounce o↵ each
other several times. These bounces occur in narrow win-
dows of initial velocities that are nested and fractal-like
punctuated by ‘bion chimneys’ and are observed only for
initial velocities larger than vmin ⇡ 0.18.

To understand these phenomena is, at its core, a prob-
lem of complexity. During the KK̄ collisions, the field
enters a deeply non-linear regime, where our analytic and
‘weak-field’ perturbative tools fail. It could be the case
that a very large number of degrees of freedom partici-
pate with equal importance, and we may never untangle
the web of inner-dependencies. That would be a sce-
nario of computational irreducibility that is characteristic
for some discrete dynamical systems, such as cellular au-
tomata [1]. Fortunately, for solitons it has been an over-
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whelming experience that the opposite is true – there is
a surprisingly large reducibility. Namely, a deep under-
standing of the dynamics seems to be possible through
tracking only a few e↵ective degrees of freedom, called
collective coordinates (CCs).
This is most evident for multi-soliton configurations

that are BPS [2, 3]. The small-velocity scattering of
BPS solitons can be accurately described using the mod-
uli (geodetic) approximation, where the CCs are time-
dependent parameters (moduli) of the static solution,
such as mutual separations, etc. Integrating the field’s
kinetic energy for this background we get a metric of the
moduli space – a curved manifold of BPS solutions – and
the scattering of solitons is equivalent to the geodetic
motion [4].
For a non-BPS case, the canonical moduli space does

not exist and we are forced to guess. However, a gen-
eral strategy, which can be perhaps called an adiabatic
method, uses the same principle, namely it introduces an
ad hoc moduli space that aspires to capture the dynam-
ics under investigation. The coordinates of this space
become dynamical variables in the resulting Collective
Coordinate Model (CCM), usually resembling classical
mechanics of interacting point masses.
In the case of �4 kinks, there are no static multi-kink

solutions (however, one can stabilize them by adding im-
purities [16]). The use of CCM for �4 kinks has a long,
fruitful, and somewhat complicated history (see [18] for a
recent overview). For our purposes, let us highlight two
important results.
First, for a single kink, it has been noticed a long-

time ago [22] that a correct CCM (in the sense of both
qualitative and quantitative agreement) must include not
only the position modulus but also a scaling modulus. If
we plug the ansatz

�bkg = tanh
�
b(t)(x� a(t))

�
(1)

into the Lagrangian and integrate over x, the resulting ef-
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Mechanization

ϕ1(t)
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ϕN(t) = vR
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1
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1
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∂μϕ∂μϕ − V(ϕ)

𝒱′ (ϕ) = V(ϕ)Assuming:   x0(t) < x1(t) < … < xN(t)



Mechanization
X = {x0, x1, … xN, ϕ1, ϕ2, … ϕN−1}

g =

(Δϕ0)2

3Δx0
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1
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{1
6

(Δxa)3 ·k2
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1
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Δϕa
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Metric is block-tri-diagonal

det(g) =
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12N
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∏
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N−1

∏
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(xb+1 − xb)2 Singularity whenever two joint meets 

& when neighbouring slopes coincide 



Mechanization

Y = {k0, k1, … kN−1, Φ0, Φ1, … ΦN−1}

g =

(x3
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12N

N−1
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a=0
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Better coordinates:
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gradual exploration of dynamics
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Super-luminal solutions also exists!
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Asymmetric mech-oscillon

N=2

10 20 30 40 50
t

-10

10

20

30

40

50

60
x

positions of joints
conf = {-3., 0., 3., 2., 0.1, 0.1, 0.1, 0.}

x0[t] x1[t] x2[t]



Rigid mech-oscillons
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Mech-kinks
Mech-kinks are found by minimising energy with topologically non-trivial boundary conditions: ϕ0 = vL ≠ vR = ϕN

n = 1

ϕM ϕKink

n = 2

ϕM ϕKink

n = 7

ϕM ϕKink

V(ϕ) =
1
2 (1 − ϕ2)2 ϕK = tanh(x)
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𝒱(ϕa) − 𝒱(ϕa−1)
ϕa − ϕa−1

In general case the static equations of motion reduce to system of 2N non-linear algebraic equations

dϕ
dx

= 2V(ϕ) V(ϕ)2 = V(ϕ)2N → ∞



Mech-kinks

X

X

X
X

X X X X X X X X X X X

Χ

Χ

Χ
Χ

Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ

X ϕ4 model

Χ SGmodel

5 10 15 20 25 30
N

-0.01

0.01

0.02

0.03

0.04
mK /MK-1 Convergence as  ? If very slow! N → ∞ ∃ ⇒

XX

XX

XX
XXXXXX

XXXXXXXXXXXXXXXXXXXXX
X

ΧΧ

ΧΧ

ΧΧ

ΧΧΧΧ
ΧΧ

ΧΧΧΧ
ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ

Χ

X SGmodel

Χ ϕ4 model

5 10 15 20 25 30
n

5

10

15

ωn

N=17

△

△

△

△

△

△

△

△

△

△

△△

△

△

△

△△

△

△

△

△
△

△

△

△

△
△

△

△
△

△

△
△

△

△
△

△

△
△

△

△
△

△

△
△

△

△
△

0 5 10 15
N

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

ω
ϕ4 model

massive mode Derrick mode

Cont. treshold

△

△

△

△△

△

△

△

△△

△

△
△

△△

△

△
△

△
△

△

△△

△

△
△

△

△△

△

△
△

△

△△

△

△
△

△

△△

0 5 10 15
N

0.8

1.0

1.2

1.4

ω
SG model

Cont. treshold Derrick mode



Scattering of mech-kinks
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Bouncing and/or mech-oscillon decay

20 40 60 80 100
t

-25

-20

-15

-10

-5

5

10
R(0) = 10 v = 0.1

R -RK

30 40 50 60 70
t

-4

-2

2

4

R(0) = 10 v = 0.16

R -RK

Scattering of mech-kinks



Scattering of mech-kinks

Value of the field at the center Green: R = 0 Red: R = − RK



Scattering of mech-kinks

Green: R = 0 Red: R = − RKValue of the field at the center



Scattering of mech-kinks
Value of the field at the center
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