

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

About me:

experiment trap

stack

- 1998 : Born in Klaipeda, Lithuania
- 2016—2017 : International Physics Olympiads experience
- 2017-2021 : Bachelor and Master degrees at University of Cambridge
- 2021— : PhD studies at ETH Zürich, full-time at CERN, BASE experiment

PhD thesis topic: implementation of new seven-electrode precision trap

Currently working on: antiproton beam monitor amplifiers

B SE

Gilbertas Umbrazunas

PhD student

Prof. Dr. Anna Soter group, Institute for Particle Physics and Astrophysics ETH Zürich

Email: Phone: Office: gumbrazunas@phys.ethz.ch +41 75 411 27 71 HPZ G 32.1 (but most time at CERN)

E Antiproton Decelerator

 $\downarrow H^{-} (hydrogen anions) \downarrow p (protons) \downarrow ions \downarrow RIBs (Radioactive Ion Beams) \downarrow n (neutrons) \downarrow p (antiprotons) \downarrow e (electrons) \downarrow u (muons)$

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

- Low energy particle physics:
 - Measuring fundamental constants: g-factor, q/m ratio,
 - Comparing q/m for \overline{p} and H^- ions (proxy for protons),
 - Comparing g-factor for \overline{p} and p,

-> CPT symmetry test in the baryon sector up to the p.p.t. precision

- Atomic physics:
 - Penning traps for storing ions
 - Irradiating Larmor frequency signal via the dedicated spin-flip coils and measuring the spin flip probability
 -> measuring the g-factor
- "Classical" physics:
 - Moving particles produce charge image on electrodes -> currents
 - Particle with resonator oscillations -> frequency determination

Motivation – CPT symmetry test

Consider behaviour of **common physical quantities** under the three **discrete transformations P, C and T**:

Quantity	Notation	P	C	T $ $	
Position	\vec{x}	$-\vec{x}$	$+\vec{x}$	$+\vec{x}$	
Velocity	$\vec{v} = \mathrm{d}\vec{x}/\mathrm{d}t$	$-ec{v}$	$+\vec{v}$	$-\vec{v}$	
Linear momentum	$\vec{p} = m\vec{v}$	$-ec{p}$	$+\vec{p}$	$-ec{p}$	
Angular momentum	$\vec{L} = \vec{r} imes \vec{p}$	$+ec{L}$	$+ec{L}$	$-ec{L}$	
Spin	$\vec{S} \text{ or } \vec{\sigma}$	$+\vec{\sigma}$	$+\vec{\sigma}$	$-\vec{\sigma}$	
Helicity	$h = \vec{\sigma} \cdot \vec{p}/ p $	-h	+h	+h	
Electric Field	$ec{E}$	$-ec{E}$	$-ec{E}$	$+\vec{E}$	
Magnetic Field	\vec{B}	$+\vec{B}$	$-ec{B}$	$-\vec{B}$	
Electric Dipole Moment	$ec{\sigma}\cdotec{E}$	$-ec{\sigma}\cdotec{E}$	$-ec{\sigma}\cdotec{E}$	$-ec{\sigma}\cdotec{E}$	
Magnetic Dipole Moment	$\vec{\sigma}\cdot \vec{B}$	$+\vec{\sigma}\cdot\vec{B}$	$-ec{\sigma}\cdotec{B}$	$+ec{\sigma}\cdotec{B}$	
Longitudinal Polarization	$ec{\sigma}\cdotec{p}$	$-ec{\sigma}\cdotec{p}$	$+\vec{\sigma}\cdot\vec{p}$	$+ec{\sigma}\cdotec{p}$	
Transverse Polarization	$\vec{\sigma} \cdot (\vec{p_1} \times \vec{p_2})$	$+ec{\sigma}\cdot(ec{p_1} imesec{p_2})$	$+ec{\sigma}\cdot(ec{p_1} imesec{p_2})$	$\left -ec{\sigma} \cdot (ec{p_1} imes ec{p_2}) ight $	

E Recent upgrades and expectations

- Two particle triple trap method is an upgrade on the measurement algorithm for the proton and/or antiproton magnetic moment. Using two particles in the trap stack simultaneously, a single repetitive measurement cycle time can be decreased significantly.
- Combined with the recent apparatus upgrade, a newly installed cooling trap, this opens prospects towards the measurements of the proton/antiproton magnetic moments with less than 100 ppt fractional precision (current values: 300 ppt for proton, 1500 ppt for antiproton).
- Comparing the newly measured proton and antiproton gfactors, we aim at a 15-fold improved test of the CPT invariance in the baryon sector.
- A prospect for more precise and fast cyclotron frequency determination is foreseen when the phase-sensitive methods will be implemented and integrated to the experiment.

CPT invariance predicts:

$$\begin{array}{l} q_p = -q_{\bar{p}},\\ m_p = m_{\bar{p}},\\ \mu_p = -\mu_{\bar{p}}. \end{array}$$

[1]

Penning traps are used:

- to trap charged particles,
- to manipulate charged particles:
 - to park, move along the axis,
 - to excite axially/radially,
 - to "cool" axially/radially,
 - to split a cloud of particles,
 - • •
- to measure the cyclotron frequency.

Physics topics include:

- -> ion spectra
- -> quantum computers
- -> atomic clocks
- -> fundamental properties: g-factor, q/m ratio

Trapping condition – E&B fields:

- Static quadratic electric potential: $\Phi(z,\rho) = C_2 Vr (z^2 - \rho^2/2)$
- Static uniform axial B-field

Trajectory – 3 orthogonal motions:

• Harmonic axial

[2]

- Circular planar modified cyclotron
- Circular planar magnetron

Axial frequency: $\omega_z = \sqrt{\frac{2qV_rC_2}{m}}$ Cyclotron frequency: $\omega_c = \frac{qB_0}{m}$

 $f_{-} = 7\ 000\ Hz$

BASE Penning trap stack

Four Penning traps are used in BASE at CERN:

- a) Reservoir Trap
- -> long storage of particles-> stable 4.5 mm radius trap
- b) Precision Trap
- c) Analysis Trap
- d) Cooling Trap

- -> frequency measurements-> stable magnetic field
- -> spin-state determination-> large magnetic "bottle"
- -> low orbit particle preparation-> magnetic "bottle" term-> new cyclotron detector

Two-trap method:

- Particle is initialized with low cyclotron orbit in the PT,
- Particle cyclotron frequency is measured in the PT,
- Particle spin is flipped in the PT,
- Transports: PT -> AT -> PT,
- Particle spin-state measured in the AT

 -> ~172(8) mHz axial frequency difference for ↑ and ↓ states

Frequency measurement technique

- 1. A charged particle induces image charge on the electrodes.
- 2. An oscillating charge induces current.
- 3. The full circuit consists of particle-electrode system and in parallel connected resonator.
- 4. The resonator Nyquist-Johnson noise is measured at the FFT analyser.
- 5. The oscillating particle effectively shorts the resonator Nyquist-Johnson noise at its oscillation frequency.
- 6. This can be seen as a dip in the noise FFT profile.
- The temperature of the particle undergoes Boltzmann statistics while it is interacting with the resonator:

-> particle in thermal equilibrium with a reservoir

PhD projects: New seven-electrode trap design

Advantages over the five-electrode traps:

- Better E-field harmonicity at low z (C4=C6=C8=C10=0):
 - symmetric field expansion $\Phi(z) = Vr (C_0 + C_2 z^2 + C_4 z^4 + ...)$
- Larger (factor of ~3) stable magnetron region:
 - lower Δv_z (from Duffing equations):
 - $\Delta v_z = v_z \left(3/4 \; C 4/C 2^2 \left(k B \; T z/q V r \right) + 15/16 \; C 6/C 2^3 \left(k B \; T z/q V r \right)^2 + \ldots \right)$
 - similar frequency shift dependence in the other modes

-> More precise cyclotron frequency measurement

- Already implemented in other Penning trap experiments:
 - LIONTRAP (Mainz, Germany)
 - ALPHATRAP (Heidelberg, Germany)

(a) Thermal expansion vs. harmonicity:

(b) New trap design:

PhD projects: Antiproton beam monitors (1)

 Four new antiproton beam monitors were installed in 2022 (marked 1-4), to have better antiproton beam tracking along the experiment axis.

 Antiprotons are registered using Faraday cups, which consist of a capacitor, onto which the charge is distributed, and an amplification stage.

E PhD projects: Antiproton beam monitors (2)

- Beam monitors and amplifier PCBs;
- Faraday cage for amplifying and connecting the hot lines to the coaxial outputs;
- Data readout rack: four oscilloscopes.
- Signals of the antiproton annihilation and H- ion deposition + charge liberation from the board;
- Different signal shape depends on the oscilloscope input resistance and whether the amplifier stage is used or not.

Key publications by BASE

Title	Journal	Year	Quantity	Value	Fractional precision
A 16-parts-per-trillion measurement of the antiproton-to- proton charge–mass ratio by M. J. Borchert et al.	Nature	2022	$\left(\frac{q}{m}\right)_{\bar{p}} / \left(\frac{q}{m}\right)_{p}$	-1.0000000003(16)	16 ppt
Sympathetic cooling of a trapped proton mediated by an LC circuit by M. Bohman et al.	Nature	2021	-	-	-
Direct limits on the interaction of antiprotons with axion-like dark matter by C. Smorra et al.	Nature	2019	_	_	-
Measurement of ultralow heating rates of a single antiproton in a cryogenic Penning trap by M. J. Borchert et al.	Phys. Rev. Lett.	2019	-	_	_
Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision by G. Schneider et al.	Science	2017	μ_p/μ_N	2.79284734462(82)	300 ppt
A parts-per-billion measurement of the antiproton magnetic moment by C. Smorra et al.	Nature	2017	$\mu_{ar{p}}/\mu_N$	-2.7928473441(42)	1500 ppt TTM
Observation of individual spin quantum transitions of a single antiproton by C. Smorra et al.	Phys. Lett. B	2017	-	-	-

[1] American Physical Society: Alan Stonebraker

[2] Matthias Borchert PhD thesis, University of Hannover, Germany

[3] Onsets of nuclear deformation from measurments with the ISOLTRAP mass spectrometer by S. Naimi, 2010

... and publications by BASE