Introduction to Particle Physics

SWEDISH PHYSICS TEACHERS 2023

Handout 1

- ➤ Particles and Interactions
- ➤ Glimpses on the Standard Model
- Quarks and Particle spectroscopy

Credits to:

C. Grosjean and D. Tong: https://indico.cern.ch/event/1254879/timetable/

SOCRATE, (470-399 B.c.) **(PLATO,** *APOLOGY* **)**

By Sting, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=96296061

So di non sapere – Wikipedia

«So di non sapere» (consapevolezza della propria ingnoranza)

https://en.wikipedia.org/wiki/Socrates

Socrates, aware of his own leak of knowledge, professes his own ignorance...and me as well!

Introduction

 Particle Physics: study of fundamental particles and interactions of the "subnuclear world"

And what about dark matter and dark energy?

Metaphors of Fundamental interactions:

Particles and Interactions

- •Classically, a field is a mat. function of space-time which values are known all over a given space (e.g.: temperature field $(T = \phi(x, y, z, t))$;
- •Particles are quantum fields permeating all the universe. Its value is zero almost everywhere except where the particle is located.
- •The ripple of the quantum field is the quanta of the field, that means the particle!
 - •e-field
 - •q's fields
 - •ν's fields

Particles and Interactions

- Interactions as well are described as quantum fields permeating all the universe;
- •The ripple of the quantum field is its quanta, that means the particle mediating the interaction (aka vector bosons)!
 - photon-field mediates the E.M. interaction
 - •8 gluon-fields mediate the Strong Interaction
 - •2 W's and Z⁰ fields mediate the Weak interaction

Pictorial view of a quantum field

Particle and Field: in 1924, L. de Broglie proposed that a particle of energy E and momentum p, has an associated matter field with frequency v = E/h and wavelength $\lambda = h/p$.

...just to figure out the ripple...

https://www.google.com/... See the note

Wave-particle duality!

Heisenberg's uncertainty principle $\Delta E \Delta t \ge h$ and $\Delta x \Delta p \ge h$

Quantum Mechanics!!

-interaction radiation-matter via the photon;

-....

Glimpses on the Standard Model

THE STANDARD MODEL OF PARTICLE PHYSICS (SM)

- -It is a mathematical framework for a unified description of three interactions:
 - ➤ The Electromagnetic interaction,
 - The Weak Interaction (particle decay, radioactivity),
 - ➤ The Strong Interaction (interaction binding quarks),
- -Plus, the Higgs field (providing the mass to the particles).
- -The SM is based on Quantum Field Theory.

Glimpse on Quantum Field Theory

- •QFT = QM+ quantum Fields = Quantum Field Theory
- QM = Quantum Mechanics, incorporating the Special Relativity, predicts the existence of the anti-matter: Dirac equation;
- Quantum Fields = mathematical functions describing particles and interactions.

Fundamental Interactions

PROPERTIES OF THE INTERACTIONS

Property		Gravitational	Weak	Electromagnetic	Strong	
			(Electroweak)		Fundamental	Residual
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag	10 ⁻¹⁸ m	10 ⁻⁴¹	0.8	1	25	Not applicable
for two u quarks at:	3×10 ^{−17} m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
for two protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

Keystones of the Standard Model

Matter fields (aka fermions)

- Corresponding 6 anti-matter families exist!
 - 3 Anti-quarks families;
 - 3 Anti-leptons families.
- A total of 24 fundamental fermions, exists.

Keystones of the Standard Model

Interaction fields (aka vector bosons)

Keystones of the Standard Model

Standard Model of Fundamental Particles

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERNCOUR VOLUME 58 NUMBER 8 OCTOBER 2018 Collider bids to map nuclear matter DarkSide beats the background Speaking up for European unity AIMS: empowering Africa's youth

Valence quarks: give the particle identity. Hundreds of states (particles) can be arranged;

Particle Spectroscopy: valence quarks with different strong charges (colors) and different Kinematic status (angular momentum and energy levels) result in particles with different masses (excitation levels);

The Exchange of gluons hold together quarks in a nucleon and nucleons in a nucleus.

Sea quark : paired $\overline{q}q$;

Mesons and Baryons spectroscopy: static quark content

Multiplets of mesons $(q\bar{q})$ made of u,d, s and c quarks

Multiplets of barions made of u,d, s and c quarks

Summary

- Particles and Interactions are quantum fields;
- ➤ The particle-wave duality results in the Heisenberg incertitude principle. Energy quantization and more → Quantum Mechanics;
- The QM incorporate the SR and predicts the existence of the antimatter (Dirac equation);
- The Quantum Field Theory (QFT) describes interactions between particle fields by means of mediator fields;
- The Standard Model: is a mathematical framework providing a unified description of the three interactions; plus, the Higgs field. The SM is a QFT;
- ➤ Particle spectroscopy: by the valence quarks (quarks and anti-quarks), hundreds of particles (states) can be built.