Single Event Effect Mitigation Techniques, Testing and Verification of the RD53 chips

EP-ESE Electronics Seminar

Jelena Lalic On behalf of the RD53 Collaboration

May 2, 2023

RD53 Collaboration and the Final Chips

RD53 collaboration

ATLAS and CMS

- 24 institutes
- next-generation pixel chips for phase 2 LHC upgrade
- common design framework for ATLAS and CMS
- 65 nm CMOS technology

Design requirements:

- High hit rate 3 GHz/cm²
- High trigger rate: 1 MHz (ATLAS), 750 kHz (CMS)
- Trigger latency 12.5 us
- Hostile radiation environment: 1 Grad over 10 years, 10¹⁶ hadrons/cm²
- High SEE tolerance (200 Hz/chip SEU rate in the inner layer)

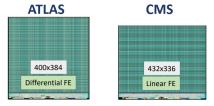
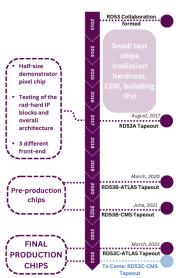
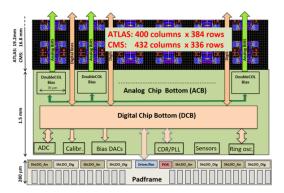



Figure: Different analog front-end and the pixel array size, but 99% functionalities are the same.

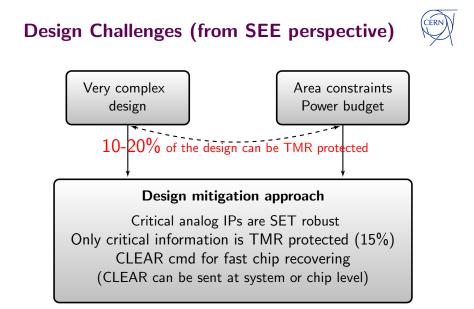
RD53 Timeline

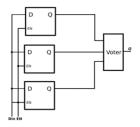
What are we covering today?


- RD53 SEE-related design challenges and SEE mitigation approach
- Problems during beam testing Preproduction chips
- Identifying design issues
 Preproduction chips
 - Two-Photon-Absorption (TPA) testing of critical analog IP blocks
 - Single Event Upset (SEU) Verification
- Final ATLAS chip Estimates based on the SEE verification

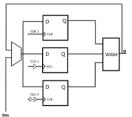
Part I

SEE Mitigation Approach in RD53 and Design Challenges


Complex chip architecture


- ${\sim}150$ k pixels
- multi-level processing, buffering, and event building
- time-tag-based latency buffering
- high-density logic and data buffers (500 million transistors!)

- 12 million FFs and latches
- 55 mil standard cells
- PLL and other critical IPs optimized against SETs
- handshaking between control and data path



TMR protection

TMR 1: Only partial pixel conf. bits

TMR 2: In the digital bottom

TMR 1

- critical pixel conf. bits
- implemented @ RTL
- SEU has a limited effect
- 100 times more SEE tolerant than a simple latch (based on the proton beam tests)
- continuous reconfiguration (can be as high as ${\sim}10$ Hz, 0.1 Hz seems sufficient)

- TMR 2
 - global conf. bits and critical data (state machines, look-up table, handshaking signals, etc.)
 - SET protection (triplicated clock and time skew)
 - logic and voters are not triplicated
 - 400 times more SEE tolerant than a simple latch (based on the proton beam tests)

measured on the preproduction chips, and time skew has improved since (from avg. 250 ps to avg. 350 ps for the final ATLAS chip)

How this compares to LpGBT

Why LpGBT?

- very strict SEE tolerance requirements (used by man systems)
- \sim 90% design fully redundant (rest protected with FEC, temporal redundancy, or not protected test features)
- Extensively verified and tested against SEEs

LpGBT

Standard cells

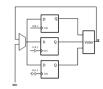
Sequential cells

					-		
919	%	sea	cells	used	in	the	full
JT	0	JCq.	cens	uscu		the	run
		т	MR s	schem	ıe		

Many thanks to Szymon K. for providing LpGBT data.

Count

455k


34k

majority

majority

comb majority D Q logic voter

RD53: TMR with time skew

RD53	Count
Standard cells	56 mil
Sequential cells	15 mil

15% seq. cells used in TMR schemes (TMR1 and TMR2)

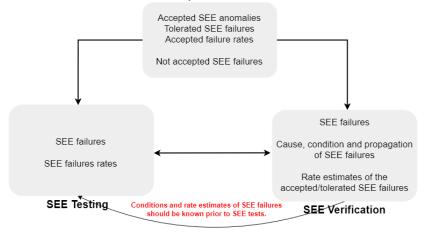
Why Not Full TMR?

A bit of history:

- TMRG tool was released when RD53 design was already well underway
- Usage of SystemVerilog interfaces was not allowed in the TMRG tool but they had been heavily used in RD53

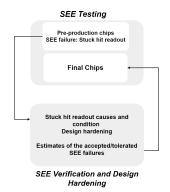
Technical reasons:

- RD53 control path relies on a data path feedback (many handshaking signals)
- TMR with skew provides SET filtering for non-triplicated data path signals going to a control path


Part II

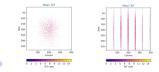
SEE Verification of Digital Design

SEE verification


Requirements

RD53 SEE Testing and Verification

- SEE testing of the preproduction chips carried out with limited SEE verification results (due to lack/loss of people during the project)
- SEE failure conditions debugged during beam tests (not time-effective, black box..)
- New SEE UVC integrated into the RD53 verification framework


It is very hard to do SEE tests under realistic hit/trigger conditions.

Stuck Hit Readout in the Beam Tests Preproduction chips

2 independent output channels. Hit and service data are time-multiplexed on the output serial link.

Different pixel array configurations during beam tests.

Hit readout issue:

- Hit data readout channel can get stuck Chip does not respond to sent triggers
- CLEAR cmd always recovers hit readout link
- Service data readout link and input CMD link always work reliably

Irradiation tests @PS-CERN (24 GeV protons).

From requirements perspective:

- Stuck hit readout is not a surprise (time-tag-based latency buffering and trigger table, TMR not 0 cross-section)
- Failure rate should be as low as possible
- Extensive SEE verification is needed to assure the above is correct

RD53 SEE Tolerance Requirements

SEE Failures	Status	Comment
Lost or ghost hit	Accepted	up to $\sim 0.1\%$.
Missing/corrupted event	Accepted	up to $\sim 0.01\%$
Stuck hit readout	Tolerated	must recover by CLEAR (Tolerable to send global CLEAR up to 10-100 Hz, but should be avoided)
Anything that requires power cycling	Not accepted	serial powering

RTL versus gate level simulations

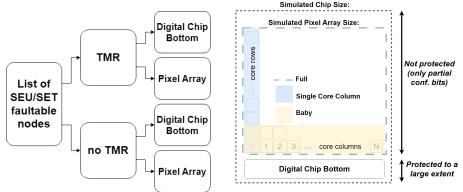
RD53 SEE Verification Tasks	can be done @RTL	can be done @GL	Comment
SEU fault injections on the outputs of unprotected sequential elements	yes	yes	naming convention to determine if triplicated or not
SET fault injection simulations	no	yes	supported only at GL
Implementation of pixel config. bits TMR is OK	yes	yes	triplication at RTL
Implementation of TMR with skew is OK	no	yes	triplication at GL
Disabling one of the triplicated clocks is OK	no	yes	triplication at GL

Simulation level used for a specific verification task

Strict SEE checkers

Relaxed SEE checkers

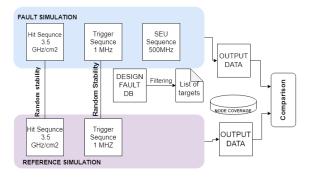
Tasks with relaxed SEE checkers are most difficult to debug.


Everything feasible to do at RTL should be done at RTL.

Gate-level simulations require 10-100 times more time and resources.

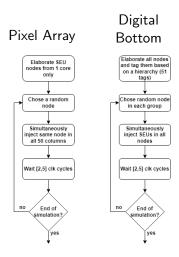
Jelena Lalic

Nodes for Fault Injections And Simulated Chip Size



- SEE simulations are done separately in pixel array and digital chip bottom to facilitate and speed up debugging
- Majority of the simulations done on *BABY* chip 25 more time/resources needed for *Full* chip (efficient management of simulation resources is important)

RD53 Fault Injection Simulations


Double time/resources for SEE simulations. Fault injection and a reference simulation always run together.

Reference simulation: Fault injection-free simulation

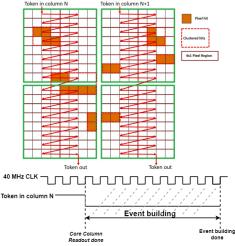
Events comparison between fault simulation and a reference simulation for the same SEED.

SEU Fault Injection Simulations

High hit/trigger rate (conditions in the inner layer):

- 3.5 GHz/cm² hit rate
- 1 MHz trigger rate

• 2 Main Tests:


- Random Test: Randomization across all chip conf.
- Standard Test: Default chip configuration in the inner layer

SEU acceleration factor per FF: Pixel Array: 70 million DCB: 100 million

Hit Readout Stuck in Simulations

SEU fault injections in non-TMR nodes in pixel array at RTL

If Token gets asserted during 9 clock cycles it will cause a chip to get stuck.

Trig state	Start state	Latency mem.
0	0	idle
0	1	counting
1	1	triggered
1	0	toRead

2-bit state register for each latency memory (8 latency memories per pixel region)

Cross-section of this failiure 1s/chip. (Check backup for scaling details.)

Can not be triplicated.

Hit readout stuck

PROBLEM:

```
if (DataLast & ~Token)
TriggerProcessing <= '0';</pre>
```

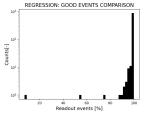
Rate of the hit readout stuck state 1s/chip.

FIX:

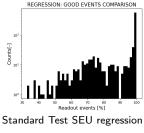
```
if (DataLast )
TriggerProcessing <= '0';
```

Rate of the hit readout stuck state ${\sim}5\text{--}10~\mathrm{days/chip.}$

There is no *small* RTL change.


One RTL line can cause severe SEE failures.

RTL needs to be verified against SEEs after every change or new feature.


No way to get this right while writing RTL.

SEU injections in non-triplicated nodes

Random Test SEU regression

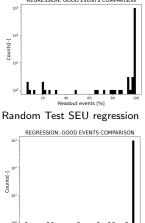
© 100 mil FF acceleration factor

Digital Chip Bottom - Final Chip Estimates Scaling for the inner layer:

Chip gets stuck every ~55k events (at 1MHz trigger rate) SEU injection rate per FF: 500MHz/300k=1.5E3 Acceleration factor per FF: 1.5E3/1.5E-5=1E8 (HEH rate inner layer: 1GHz/cm2 FF HEH cross section: 1.5E-14 cm2 FF SEU rate in inner layer: 1E9*1.5E-14 = 1.5E-5 Hz)

Events per stuck in the inner layer: $55k*1E8{=}55E11$ At 1MHz trigger rate: $55E11/1E6{=}55E5$ seconds ${\sim}50$ days

	Read Events Faultsim	Read Events Reference	Ghost Events	Lost Events
Random conf.	160k	160.5k	3%	<0.5%
Standard conf.	210k	250k	21%	<16%
@ 100 mil FF acceleration factor				


	Avg. events between hit stuck	
Random conf.	55k	@ 100 mil FF acceleration factor
Standard conf.	/ (no stuck states)	

Jelena Lalic

SEU fault injections in non-triplicated nodes

Readout events [%] Standard Test SEU regression

© 70 mil FF acceleration factor

Pixel Array - Final Chip Estimates

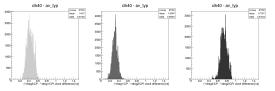
Scaling for the inner layer:

Simulations: Chip gets stuck every \sim 9k events Inner layer: At 1MHz trigger rate: \sim 8 days

	Read Events Faultsim	Read Events Reference	Ghost Events	Lost Events
Random conf.	165k	167k	0	1%
Standard conf.	250k	251k	0	0.3%

@ 70 mil FF acceleration factor

	Avg. events between hit stuck	
Random conf.	9k	
Standard conf.	30k	
@ 70 mil FF acceleration factor		


SEU fault injections in non-triplicated nodes

- Failure-rates uncertainty factor:
 - SEU faults not evenly injected across all FFs (and latches). Bias in a random generator
- Regressions with regular CLEAR cmd sending (confirms that chip always sends hit data after CLEAR)
- SEU fault coverage
 - Pixel array: >240 SEU/node (effectively 50 times higher, same node injected in all core columns)
 - Digital Bottom: >300 SEU/node
 - 2 weeks of running 30 parallel simulations are needed for the above coverage
- Resources management and simulation planning
 - several hours to simulate 1 hit readout stuck on BABY chip
 - for Full chip it would take several days to get 1 failure!
- Chip does not get stuck if hits are not injected in simulations (very important to have a high hit rate during beam tests)

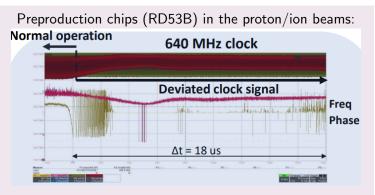
SET fault injections at gate level

RD53 TMR Time Skew

SET width	events to get stuck voter outputs	events to get stuck FFs input	
100 ps	0	200k	
250 ps	19 k	100k	
500 ps	4 k	14k	
@5 mil acceleration			

- SET: ideally injecting in all nets/pins
- Not feasibly for RD53 (millions of gates)
- Fixed SET width (100 ps, 250 ps, 500 ps)
- Injections in voter outputs
- Injections in FFs input
- Injections in FFs output
- SET simulations are still running for final chip

SEE Verification Key Takeaways


- SEE verification approach is defined by SEE tolerance requirements of a DUT Verification of a huge, complex design with tolerated and accepted SEE failures completely differs from verification of a relatively small 0 fault-tolerance design
- More SEE tolerance requirements are relaxed, debugging of SEE failures gets more complicated (several days of waveforms debugging to understand conditions of one hit readout stuck failure)
- Failure rate in a real system needs to be estimated based on verification results for tolerated failures
- Understanding conditions under SEE failures occur and communicating these conditions to the testing team is essential (hit rates, trigger rate, a specific feature enabled, ...)

Part III

Analog Chip Bottom SET-induced link dropouts in preproduction chips and TPA laser testing

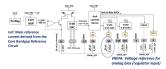
Link dropouts in the test beams

- Monitoring 640 MHz clock (PLL output clock is divided by 2 and routed to the chip output)
- Readout link dropouts during ion and proton beam tests caused frequent DAQ-chip de-sync and event readout loss.
- Estimated time between link dropouts in the inner layer (based on the ion beam measurements): 0.2s

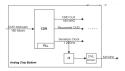
Two-Photon Absorption laser

- A single node injection
- Near-infrared imaging
- Spatial and temporal resolution
- Beam focus through the substrate
- Charge collection only at the beam focus

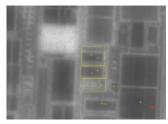
- Pulse duration 430 fs
- Pulse energy up to 2.2 nJ
- 2 TPA systems were used for the RD53 testing.

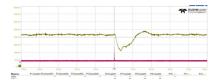


RD53 test card preparation and chip bonding for the TPA tests.


Link Dropouts: Root Cause Analysis

CERN


Shortly on analog chip bottom and powering:


The core bandgap generates the main reference current Iref. Iref is further used for generating analog and digital voltage references (VrefA and VrefD).

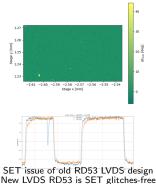
The Clock and Data Recovery (CDR) circuit is powered by analog voltage (2*VrefA).

Core bandgap reference circuit with 3 marked transistors found SET sensitive (chip thickness 250um).

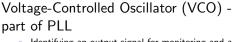


VrefA voltage drop induced by TPA laser beam shooting into any of the 3 sensitive transistors. voltage drop 200mV; transient 20us Much bigger effect than we had expected.

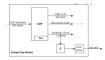
Analog SET Simulations



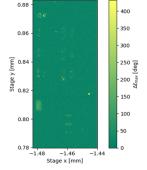
SET analog simulations were done with a simulation tool from Sevilla.

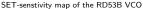


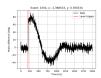
- Voltage drop issues seen in testing were reproduced in simulations
- SET compensating transistors were added (VGATE1 to GDNA, VGATE2 to GNDA)
- SET simulations after design hardening confirms that SET sensitivity is mitigated
- RD53C is now expected to have much lower link-dropout cross-section


- tool used for characterization of analog IPs
- SET-sensitivity in the LVDS circuit was discovered and fixed
- This was later reproduced in TPA testing
- TPA testing confirmed that LVDS hardened design is SET robust

SET-senstivity map of analog circuits

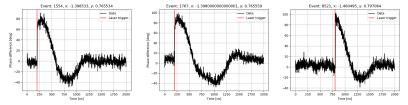



 Identifying an output signal for monitoring and a reference signal used for comparison



VCO example: SER_CLK/2 and 640 MHz reference clock from an FPGA

- Set optimal values for pulse energy, repetition rate, and spatial resolution
 VCO example: (1.2 nJ, 5 Hz, 0.5 um)
- Record circuit response to each laser pulse VCO example: 2us of monitored clocks
- Recorded data analysis and SEE map VCO example: Find a maximal phase difference deviation between 2 monitored clocks for all saved laser injections and assign each value to a scanned circuit point



Example of the VCO output clock phase deviation

TPA Testing of the VCO

A deviated phase difference is always corrected by the VCO circuit.

SET sensitivity of the VCO circuit can cause one/two-bit transmission errors. DAQ needs to be capable of correcting this.

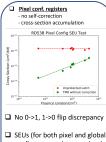
TPA Study Key Takeaways

- TPA laser testing should be used to determine the root cause of a problem that has already been identified during a test beam
- TPA was successfully used for SET hardening of the Core Bandgap circuit in the final RD53 design.
- TPA study of critical analog blocks to be used by DAQ developers to optimize a DAQ receiver for expected bit-transmission errors.
- TPA study has enabled hardening of RD53 final chip and confirmed a solid SET-robustness of analog chip bottom.

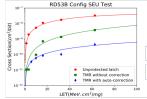
Conclusions

- SEE design hardening, verification, and testing played a crucial role in shaping the development timeline of RD53 chips
- Making a robust design that allows protecting only its small part is a big challenge
- Understanding a design hardening and verification approach used for RD53 chips requires an understanding of the chip's complex architecture and system requirements
- Very reassuring SEE estimates for final RD53C chips
- Currently
 - Awaiting for RD53C-ATLAS production wafers
 - RD53C-CMS -in a final development stage

THANK YOU


More about RD53

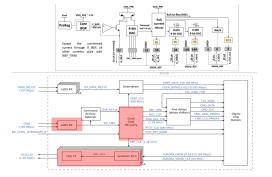
- RD53B manual, CERN-RD53-PUB-19-002 (2019), http://cds.cern.ch/record/2665301.
- RD53B Users guide https://cds.cern.ch/record/2754251


BACKUP

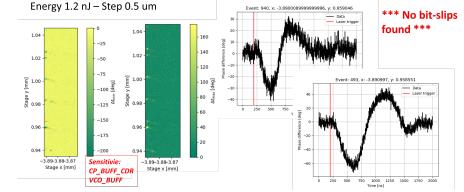
TMR mitigation schemes and their effective gain

config. memory) are randomly distributed (no global signal effects)

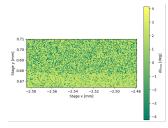
Heavy ion testing:



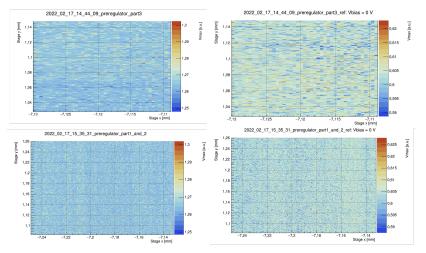
CÉRN


Voltage references and clock generation

- CDR circuit (PLL based) recovering the 160 MHz clock from the 160 Mbs CMD inputs and generating from it all clocks needed inside the chips
 - Voltage Controlled Oscillator (VCO): essential part of the CDR: generates the output clock
- Other SET critical blocks: CMD receiver (LVDS), CML driver(s), serializer(s)


TPA Testing of the CDR-CML Bias DACs

Differential Receiver in final Chip SET robust



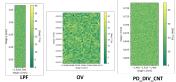
Test:

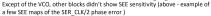
- 2 us of the receiver input (sent by DAQ) and 2 us of the serial CMD input straight from the differential receiver (routed to GP_LVDS)
- · Input CMD stream: sync and trigger commands

New receiver with 600 mV common mode – much more SEE robust! Voltage drops or other effects of the laser pulse are NOT found in the signal waveforms

TPA Testing of the RD53 prepegulator

The preregulator is divided into 2 sub-blocks and each is TPA-scanned separately. SET robust.


May 2, 2023



TPA Testing of the Clock and Data Recovery (CDR) circuit

	Block	Lower left corner	Upper right corne	H .
	CDR CORE	10320, 440	10520, 700	
	PD	10330, 590	10415, 625	1 um, 1.2 nJ
	CP	10415, 585	10455, 620	1 um, 1.2 nJ
	CP FD	10415, 623	10455, 660	1 um, 1.2 nJ
	LPF	10520, 445	10550, 690	1 um, 1.2 nJ
<	vco The	10415, 470 only sensitive bl	ock 10480, 580	0.9 um, 1.2 n.
	VCO DIG BUF	10415, 440	10505, 470	0.5 um, 1.2 n.
	DIV	10330, 430	10415, 590	1 um, 1.2 nJ
	CNT	10330, 430	10370, 525	1 um, 1.2 nJ
	ov	10490, 550	10510, 580	0.5 um, 1.2 n.

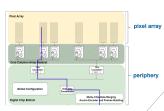
Without a major circuit redesign, the sensitivity of the VCO can't be eliminated.

The phase error will always be corrected by the circuit, while its SEE sensitivity can cause only one-two bit transmission error/s (for 1.2 nJ laser pulse, which is already extreme).

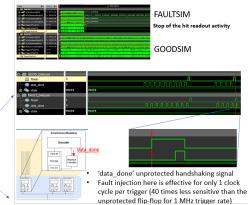
Any bigger implication of these effects on the chip behavior can't be expected. DAQ needs to be capable of handling this bit-loss.

Other parts of the CDR core didn't show SEE sensitivity.

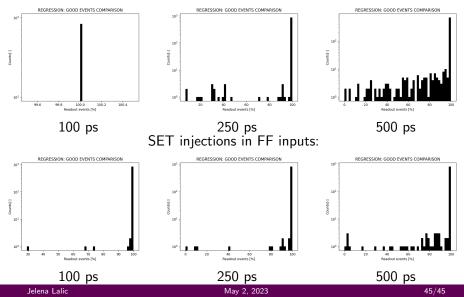
Scaling of the H	High Rate	Hit Readout	Stuck
------------------	-----------	-------------	-------


Trig_state	300 K FFs 300k (FFs) * 1.5E-14 cm2 (HEH crosssection) * 1GHz/cm2 (HEH rate) = 4.5Hz
(from idle to toRead)	Sensitive time per event: 9*25ns = 225 ns Fraction of time column readout active at 1MHz trigger: 225ns/1000ns = 0.225
	4.5 Hz * 0.225 * 0.998 (assuming 10 pixels per cc not in idle state) $ 1HZ$
Start_state	300 K FFs 300k (FFs) * 1.5E-14 cm2 (HEH crosssection) * 1GHz/cm2 (HEH rate) = 4.5Hz
(from triggered to toRead)	Sensitive time per event: 9*25ns = 225 ns Fraction of time column readout active at 1MHz trigger: 225ns/1000ns = 0.225
	4.5 Hz * 0.225 * 0.002 (assuming 10 pixels per cc in the triggered state) 0.002 HZ

May 2, 2023


SEUs in the Digital Chip Bottom

One handshaking signal was left unprotected in the preproduction chips. This is fixed for the final chip. This example demonstrates the importance of good SEE coverage per node. This problem was found after having >40 SEU/node.


SEUs in the periphery: 1 unprotected ff (per core column) was identified in encoder the that can hit readout cause stuck state if flipped in a specific time. Low cross-section. Triplicated now.

SET fault injections at gate level

SET injections in voter outputs:

