Large Deviations in the Early Universe

Tim Cohen CERN/EPFL/UOregon
with
Dan Green
Akhil Premkamar

CERT
September 4, 2023

Inflator Fluctuations

$$
(\Delta \varphi)_{c l a s i c a l}>(\Delta \varphi)_{\text {noise }}
$$

Small $\delta \varphi \Rightarrow$ universal end to inflation

Eternal Inflation

$(\Delta \varphi)_{\text {classical }} \sim(\Delta \varphi)_{\text {noise }}$
Some patches never reheat!
EFT of Inflation

$$
\left(c_{s} k / a\right)^{2} \quad \text { Csaussian }
$$

\[

\]

SSB
EFT of

$$
(\Delta \varphi)_{C l} \sim \dot{\phi} / H=f_{H}^{2} / H
$$

$$
(\Delta \varphi)_{\text {noss }} \simeq H
$$

Eternal Inflation

$$
\text { Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore } \Rightarrow f_{\pi} \sim H
$$

$$
\text { arxiv: } 0790.0293
$$

$$
\begin{aligned}
& \text { EFT of Inflation } \\
& \left(c_{s} k / a\right)^{2} \quad \text { Non-Gaussiantails } \\
& \Delta t \sim 1 / H \\
& \left(\Delta \varphi_{C 1} \sim \dot{\phi} / H \sim f_{1}^{2} / H\right. \\
& (\Delta \varphi)_{t+i l} \sim f_{\pi}^{2} / H \\
& \text { Eternal Inflation } \\
& \Rightarrow f_{f} \gg H
\end{aligned}
$$

Energy scale associated with tail:
$(\dot{\phi})_{t+i l} \sim H(\Delta \varphi)_{+, i l} \sim f_{\pi}^{2}$

EFT of Inflation: $f_{\pi}<\Lambda$

$$
f_{N L}^{e q} \sim f_{\pi}^{2} / \Lambda^{2}
$$

Current constraint:

$$
f_{N L}^{e 8}=-26 \pm 47
$$

$\Rightarrow \Lambda^{2} \ll f_{\pi}^{2}$ allowed
Only need $\Delta>H$ for EFT consistency

Energy scale associated with tail:
$(\dot{\phi})_{t a i l} \sim H(\Delta \phi)_{k i l} \sim f_{\pi}^{2} \gg \Lambda^{2}$

Con we reliably Compute tail in these models??

Starobinshy's Stochastic Inflation Massless scalar field in $d S$

\Rightarrow Fokker -planck equation:

$$
\frac{\partial}{\partial t} P(\varphi, t)=\frac{H^{3}}{\partial \pi^{2}} \frac{\partial^{2}}{\partial \phi^{2}} P(\varphi, t)+\frac{1}{3 H} \frac{\partial}{\partial \varphi}\left[V^{\prime}(\varphi) P(\varphi, t)\right]
$$

Starobinshy's Stochastic Inflation

Gaussian noise
Tree-level potential Systematic corrections?

Leading Order
Probability distribution $P(\varphi, t)$

$$
\frac{\partial}{\partial t} P(\varphi, t)=\underbrace{\frac{H^{3}}{8 \pi^{2}} \frac{\partial^{2}}{\partial \phi^{2}} P(\varphi, t)}_{\text {noise }}+\underbrace{\frac{1}{3 H} \frac{\partial}{\partial \varphi}\left[V^{\prime}(\varphi) P(\varphi, t)\right.}_{\text {drift }}]
$$

$H=$ Hubble and $V^{\prime}=\frac{\partial V}{\partial \varphi}$ Fixed point solution $(\partial P / \partial t=0)$

$$
P_{e f} \sim \exp \left(-8 \pi U / 3 H^{4}\right)
$$

Beyond Leading Order
Assume "Markovian" fluctuations (no memory)

$$
\begin{aligned}
& \frac{\partial}{\partial t} P(\varphi, t)=\int d \varphi^{\prime}\left[P\left(\varphi^{\prime}, t\right) W\left(\varphi \mid \varphi^{\prime}\right)\right. \\
& \\
& W\left(\varphi \mid \varphi^{\prime}\right) \text { is transition rate } \varphi^{\prime} \rightarrow \varphi \dot{\varphi} \stackrel{\rightharpoonup}{\bullet} \|_{\varphi^{\prime}}
\end{aligned}
$$

Beyond Leading Order
Perform Kramers-Moyal "local" expansion

$$
\begin{gathered}
\frac{\partial}{\partial t} P(\varphi, t)=\sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^{n}}{\partial \varphi^{n}} \Omega_{n}(\varphi) P(\varphi, t) \\
\omega / \quad \Omega_{n}(\varphi)=\int d \Delta \varphi(-\Delta \varphi)^{n} W(\varphi+\Delta \varphi \mid \Delta \varphi)
\end{gathered}
$$

Beyond Leading Order

$$
\frac{\partial}{\partial t} P(\varphi, t)=\sum_{n-1}^{\infty} \frac{1}{n!} \frac{\partial^{n}}{\partial \varphi^{n}} \Omega_{n}(\varphi) P(\varphi, t)
$$

$\Omega_{n}(\varphi)$ has polynomial expansion

$$
\Omega_{n}(\varphi)=\sum_{m=0}^{\infty} \frac{1}{n!} \Omega_{n}^{(m)} \varphi^{m}
$$

LO Stochastic Inflation

$$
\left.V=\sum_{l} \frac{1}{l!} c_{l} \varphi^{l} \Rightarrow \Omega_{1}^{(m)}=\frac{1}{3 H} C_{m+1} \right\rvert\, \Omega_{2}^{(0)}=\frac{H^{3}}{8 \pi^{2}}
$$

Beyond Leading Order
Generic structure

$$
\begin{aligned}
& \frac{\partial}{\partial t} P(\varphi, t)=\sum_{n=2}^{\infty} \frac{1}{n!} \frac{\partial^{n}}{\partial \varphi^{n}}\left[\sum_{m=0}^{\infty} \frac{1}{m!} \Omega_{n}^{(m)} \varphi^{m} P(\varphi, t)\right] \\
& \text { Higher order noise } \\
&+\frac{1}{3 H} \frac{\partial}{\partial \varphi}\left[V^{\prime}(\varphi) P(\varphi, t)\right]
\end{aligned}
$$

Soft de Sitter Effective Theory

Soft de Sitter Effective Theory

SdSET Fields
Two IR degrees of freedom

- "Growing" mode $\varphi_{+} \leftarrow \underset{\substack{\text { Cofrelators } \\ \text { of interest }}}{\text { C in }}$
- "Decaying" mode φ_{-}

$$
w / \phi_{s}=H\left((a H)^{-\alpha} \varphi_{+}+(a H)^{-\beta} \varphi_{-}\right)
$$

Time dependence factorizes \ddot{u}

Defining SdSET

- DOF φ_{+}and φ_{-}
- Power counting $\sim \frac{k}{\Lambda_{u v}}$ w/ $\Lambda_{u v}=a H$
- Symmetries
(1) "space time"
(2) "reparametrization"
- Initial conditions
* Very close analogy o/ Heavy Quark EFT

Light Scalars in oS Composite operators

$$
\theta_{n}=\varphi_{+}^{n} \sim(k / a H)^{n \alpha} \rightarrow \theta(1)
$$

RG mixing expected Contract any two legs

$$
\left\langle\theta_{n} \ldots\right\rangle>\left\langle\theta_{n-2} \cdots\right\rangle\binom{ n}{2} \frac{C_{\alpha}^{2}}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{H^{2-2 \alpha}}{p^{3-2 \alpha}}
$$

Light Scalars in oS $\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{H^{2-2 \alpha}}{P^{3-2 \alpha}}$ is scaleless and
Isolate UV divergence

$$
\begin{gathered}
p^{2} \rightarrow p^{2}+\bar{K}_{I R}^{2} \\
\left\langle\theta_{n} \ldots\right\rangle \supset\left\langle\theta_{n-2} \ldots\right\rangle\binom{ n}{2} \frac{C_{\alpha}^{2}}{4 \pi^{2}}\left(\frac{-1}{2 \alpha}-\gamma_{E}-\log \frac{a H}{\frac{E_{I R}}{E_{I R}}}\right)
\end{gathered}
$$

Dynamical $R G \Leftrightarrow$ Stocastic Inflation Resum time dependent logs:

$$
\begin{aligned}
\frac{\partial}{\partial \underline{t}}\left\langle\theta_{n} \ldots\right\rangle= & -\frac{n}{3} \sum_{m>1} \frac{c_{m}}{m!}\left\langle\theta_{n-1} \theta_{m} \ldots\right\rangle \\
& +\frac{n(n-1)}{8 \pi^{2}}\left\langle\theta_{n-2} \ldots\right\rangle
\end{aligned}
$$

Is equivalent to a Fokker-Planck eq for $p(\varphi, t)$ w/ $\left\langle\varphi^{n}\right\rangle=\int d \varphi p(\varphi, t) \varphi^{n}$

Stochastic Inflation for Inflation Work with scalar metric fluctuation

$$
\zeta \simeq H\left(t-\varphi / f_{\pi}^{2}\right)
$$

Has non-linearly realized shift symmetry

$$
\Rightarrow \frac{\partial}{\partial t} P(\zeta, t)=\sum_{n \geqslant 2}^{1}(-1)^{n} \frac{\gamma_{n}}{n!} \frac{\partial^{n}}{\partial \zeta^{n}} P(\zeta, t)
$$

$\stackrel{\uparrow}{H=1}$
Determine γ_{n} by computing operator mixing

$$
\frac{\partial}{\partial t}\left\langle\zeta^{N}\right\rangle=\sum_{n} \gamma_{n}\binom{N}{n}\left\langle\zeta^{N-n}\right\rangle
$$

Non-Coaussian Corrections

$$
\begin{aligned}
& \gamma_{3}:\left\langle\zeta^{3}\right\rangle=\int \frac{d^{3} k_{1} d^{3} k_{2} d^{3} k_{3}}{(2 \pi)^{3}} \underbrace{\left.\left.\left.\left(\xi\left(k_{1}\right)\right\}\left(u_{2}\right)\right\}\left(k_{3}\right)\right\rangle\right)}_{\text {Two contributions }} \\
& \gamma_{3}=\frac{\Delta_{\xi}^{2}}{32 \pi^{4}}\left(\left(1-\frac{1}{c_{s}^{2}}\right)\left(9+c_{s}^{2}\right)+\frac{c_{3}}{c_{s}^{2}}\right) \quad \dot{\xi}^{3} \quad \dot{\xi} \partial_{i} \xi^{i} \partial^{i} \tau
\end{aligned}
$$

Non-Caussian Corrections

$$
\frac{\partial}{\partial t} P(\zeta, t)=\frac{\gamma_{2}}{2} \frac{\partial^{2}}{\partial \tau^{2}} P(Z, t)-\frac{\gamma_{3}}{3!} \frac{\partial^{3}}{\partial \zeta^{3}} P(\zeta, t)
$$

Assuming P is nearly Gaussian:

$$
\begin{aligned}
& (T T) \sim \Delta_{\xi} \\
& \left\{\sim D_{\xi}^{1 / 2}\right. \\
& \partial_{\xi} \sim \Delta_{\xi}^{-1 / 2} \\
& D_{\xi} \sim \frac{H^{4}}{f_{y}^{y}}
\end{aligned} \Rightarrow \begin{array}{r}
\gamma_{2} \frac{\partial^{2}}{\partial \xi^{2}} \sim \theta(1) \\
\end{array} \Rightarrow \quad \gamma_{3} \frac{\partial^{3}}{\partial \xi^{3}} \sim \frac{\Delta_{\xi}^{1 / 2}}{c_{s}^{2}} \sim \frac{H^{2}}{\Lambda=\Lambda_{n} \Lambda_{s}} \ll 1
$$

Coaussian Distribution
Solve $\frac{\partial}{\partial t} P_{G}(\zeta, t)=\frac{D_{s}}{4 \pi^{2}} \frac{\partial^{2}}{\partial \zeta^{2}} P_{G}(\xi, t)$
with boundary condition

$$
\begin{aligned}
& P_{G}\left(\xi_{1} \zeta_{i} ; t=0\right)=\delta\left(\xi-\xi_{i}\right) \text { and } P_{G}\left(\varphi_{r}[\xi]\right)=0 \\
& \Rightarrow P_{G}\left(\phi[\xi]<0, \xi_{i} ; t\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2} t}}\left[e^{-\left(\xi-\xi_{i}\right)^{2} /\left(2 \sigma^{-2} t\right)}-e^{-4 \xi_{i} / 2 \sigma^{2}} e^{-\left(\xi+\xi_{i}\right)^{2} / 2 \sigma^{2} t}\right] \\
& \sigma^{2}=2 \gamma_{2}=\frac{\Delta_{\xi}}{2 \pi}
\end{aligned}
$$

Onset of Eternal In flation Probability of reheating at time t :

$$
P_{R, G}(t)=-\frac{d}{d t} \int_{-\infty}^{0} d \varphi P_{G}(\varphi ; t) \sim e^{-t / 2 \sigma^{2}}
$$

Volame of reheating surface:

$$
\begin{aligned}
& (V)_{G}=L^{3} \int_{0}^{\infty} d t e^{3 t} P_{R, G}(t) \simeq L^{3} \int_{0}^{\infty} d t e^{t\left(3-1 / 2 \sigma^{2}\right)} \\
& \Rightarrow(U)_{G} \rightarrow \infty \text { when } \sigma^{2}=\frac{\Delta_{3}}{2 \pi^{2}}>\frac{1}{6} \Rightarrow \begin{array}{l}
\text { Eterna/ } \\
\text { inflation }
\end{array}
\end{aligned}
$$

Arkani-Hared, Dubousky, Nicolis, Trincherini, Villadoro oz8t. 1814

Non-Ganssian Distribution
Solve $\frac{\partial}{\partial t} P_{N G}(\tau, t)=\left(\frac{D_{\xi}}{8 \pi^{2}} \frac{\partial^{2}}{\partial \zeta^{2}}-\gamma_{3} \frac{\partial^{3}}{\partial \xi^{3}}\right) P_{\mu G}(\xi, t)$
Boundary conditions: $P_{N G}\left(\xi, \vec{T}_{i} ; t=0\right)=\delta\left(\xi-\xi_{i}\right)$

$$
\operatorname{PoS}\left(\varphi_{r}[\xi]\right)=0
$$

Solution: $P_{N G}=\exp \left(-\frac{\gamma_{3} t}{3!} \frac{\partial^{3}}{\partial \eta^{3}}\right) P_{G}$ timages

Non-Ganssian Onset of Eternal Inflation Probability of reheating at time t :

$$
P_{R, \nu c}(t) \sim \exp \left[-t\left(\frac{1}{2 \sigma^{2}}-\frac{\gamma_{3}}{3!} \frac{1}{\sigma^{6}}\right)\right]
$$

Volume of reheating surface:

$$
(V)_{N G}=L^{3} \int_{0}^{\infty} d t e^{3 t} P_{R, N G}(t)
$$

$\langle V\rangle_{N G} \rightarrow \infty$ when $\frac{1}{2 \sigma^{2}}-\frac{\gamma_{3}}{3!} \frac{1}{\sigma^{6}}<3$

$$
\Rightarrow \frac{1}{2}-\frac{1}{48} \frac{f_{\pi}^{2}}{1^{2}}\left(\left(c_{s}^{2}-1\right)\left(9+3 c_{3}^{2}\right)+c_{3}\right)<\frac{3 \Delta_{s}}{2 \pi^{2}}
$$

Interpretation

$$
\underbrace{\frac{1}{2}}_{\text {Gawsian }}-\underbrace{\frac{1}{48} \frac{f_{\pi}^{2}}{1^{2}}\left(\left(c_{s}^{2}-1\right)\left(9+3 c_{s}^{2}\right)+c_{3}\right)}_{\text {non-Ganssian }}<\frac{3 \Delta_{s}}{2 \pi^{2}}
$$

Do these models really predict eternal inflation??

$$
6
$$

Random Walks and $R C_{s}$
Toy models of fluctuating fields Independent and identically distributed random variable X.

1) Gaussian $P_{g}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)$
2) Fixed step $P_{f}(x)=\frac{1}{2} \delta(|x|-1)$ $\langle x\rangle=0$ and $\left(x^{2}\right)-(x)^{2}=1$

Same Coarse Grained Predictions

Compute Displacement
How far does walker move in N steps?

$$
\begin{aligned}
& \bar{Z}=\sum_{i=1}^{N} x_{i} \Rightarrow P(\bar{X})=\int \prod_{i=1}^{N} d x_{i} p\left(x_{i}\right) \delta\left(X-\sum_{i=1}^{N} x_{i}\right) \\
& \Rightarrow P(\bar{X})=\int \frac{d k}{2 \pi} e^{-i k X} \int_{\left\langle e^{i k x}\right\rangle^{N}}^{\int_{i=1}^{N \pi} \prod^{-i k\left(X-\xi x_{i}\right)} d x_{i} P\left(x_{i}\right) e^{i k x_{i}}}
\end{aligned}
$$

Large Step Limit

1) Gaussian: $\left\langle e^{i k x}\right\rangle_{g}=e^{-k^{2} / 2}$

$$
\Rightarrow \quad P_{g}(\Sigma)=(2 \pi N)^{-1 / 2} \exp \left(-\bar{X}^{2} / 2 N\right)
$$

2) Fixed step: $P_{f}(X)=\frac{N!}{\left(\frac{N-X}{2}\right)!\left(\frac{N+X}{2}\right)!} 2^{-N}$

$$
\text { Stirling's } \Rightarrow P_{f}(X) \simeq \exp \left(-X^{2} / 2 N-X^{y} / 12 v^{3}+\cdots\right)
$$

Gaussian!

Central Limit Theorem Assume expansion $\log \left\langle e^{i k x}\right\rangle=\sum_{n=1}^{\infty} \frac{(i k)^{m}}{m!}\left\langle x^{m}\right\rangle_{G}$ $v /\langle x\rangle_{c}=\langle x\rangle,\left\langle x^{2}\right\rangle_{c}=\left(x^{2}\right)-\langle x\rangle^{2}, \ldots \quad \begin{gathered}\text { Connected } \\ \text { correlations }\end{gathered}$

$$
\left.P(X)=\int \frac{d k}{2 \pi} e^{-i k X} \exp \left(i k N-\frac{1}{2} N k^{2} \sigma_{0}^{2}+i^{3} N k^{3} / x^{3}\right)_{4}+\cdots\right)
$$

If integral support dominated by Gaussian: $k \leqslant 1 / \sqrt{n} \sigma_{0}$

Central Limit Theorem Gaussian support: $k \leqslant 1 / \sqrt{N} \sigma_{0}$

$$
P(X)=\int \frac{d k}{2 \pi} e^{-i k X} \exp \left(i k \sqrt{N}-\frac{1}{2} N k^{2} \sigma_{0}^{2}+\frac{i^{3}}{3!} N /^{3} / x^{3} 3 / \sqrt{N}+\ldots\right)
$$

Rescale (coarse grain): $k \rightarrow k / \sqrt{N}, X \rightarrow \sqrt{N} X$

$$
\begin{aligned}
\Rightarrow P(X) & \rightarrow \frac{1}{\sqrt{N}} \int \frac{d k}{2 \pi} \exp \left(i k(\sqrt{N}(x\rangle-\bar{X})-\frac{1}{2} k^{2} \sigma_{0}^{2}+O\left(\frac{1}{N}\right)\right) \\
& \simeq \exp (-\underline{X}-\sqrt{N}\langle x\rangle)^{2} / 2 \sigma_{0}^{2}
\end{aligned}
$$

Central Limit Theorem is $R C$
"UV insensitive"
In $N \rightarrow \infty$ limit:
$\langle x\rangle$: relevant
σ_{0} : marginal
$\left.\left\langle x^{n}\right\rangle_{G} w / n\right\rangle 2$: irrelevant

Large Deviation Principle
Consider probability of finding random walker distance beyond N after N steps:

$$
P(X>N)=?
$$

Expect UV dependence:
Fixed step walker: $P_{f}(X>N)=0$
Gaussian walker: $P_{g}(\bar{X}>N) \neq 0$

Large Deviation Principle
Compute $\left\langle e^{\theta X}\right\rangle w / \theta>0$
Naively expect $\left\langle e^{\theta X}\right\rangle \sim e^{\theta \theta(\sqrt{\pi})}$
But $\left\langle e^{\theta X}\right\rangle=\left\langle e^{\theta x}\right\rangle^{N}=e^{N \theta^{2} / 2}$
Central limit theorem fails!
Large Deviation Principle

Large Deviation Principle Define "sample mean" $\tilde{X}=\bar{X} / N$ A distribution satisfies the LDP if

$$
P(\bar{X}) \simeq \exp (-N I(\tilde{X}))
$$

where $I(\tilde{\underline{X}})$ is the "rate function"

$$
\begin{aligned}
& I_{g}(\tilde{X})=\tilde{X}^{2} / 2 \\
& I_{f}(\tilde{X})=\frac{1}{2}[(1-\tilde{X}) \ln (1-\tilde{X})+(1+\tilde{X}) \ln (1+\tilde{X})]
\end{aligned}
$$

Comparing Tails

Cramér's Theorem
Distribution of \tilde{X} satisfies LDP w/

$$
I(\tilde{X})=\sup _{\theta}[\theta \tilde{X}-\lambda(\theta)] \quad \text { o/ } \quad \lambda(\theta)=\ln \left\langle e^{\theta x}\right\rangle
$$

Proof: Assume LDP holds $P(\underline{\tilde{X}}) \simeq e^{-N I(\tilde{X})}$
Then $\left\langle e^{\theta \Sigma}\right\rangle=\left\langle e^{N \theta \tilde{X}}\right\rangle \simeq \int d \tilde{X} e^{v\left(\theta \tilde{x}-I\left(\tilde{P}^{\prime}\right)\right)}$

$$
\underset{\substack{\text { Saddle } \\ \text { point }}}{\curvearrowleft} e^{N \sup _{\tilde{X}}[\theta \tilde{X}-I(\tilde{X})]}
$$

Cramér's Theorem
So we have $\left\langle e^{\theta X}\right\rangle \simeq e^{N \operatorname{sun}_{\tilde{x}}[\theta \tilde{X}-I(\tilde{x})]}$

$$
\begin{aligned}
& \text { Also }\left\langle e^{\theta X}\right\rangle=\left\langle e^{\theta x}\right)^{N}=e^{N \lambda(\theta)} \\
& \Rightarrow \lambda(\theta)=\sup _{\tilde{X}}[\theta \tilde{X}-I(\tilde{X})]
\end{aligned}
$$

Legendre transform: $I(\tilde{X})=\sup _{\theta}[\theta \tilde{X}-\lambda(\theta)]$ LD \Rightarrow New Saddle!

$$
\text { From } L D P \rightarrow C L T
$$

If $I(\tilde{X})$ is convex and has single global minimum \tilde{X}_{0}

$$
\Rightarrow P(\tilde{X}) \simeq \exp \left(-\frac{1}{2} N I^{\prime \prime}\left(\tilde{X}_{0}\right)\left(\tilde{X}-\tilde{X}_{0}\right)^{2}\right)
$$

Good approximation for small deviations \Rightarrow Central Limit Theorem

Eternal Inflation and the LPD
Fokker - Planck for Gaussian theory $\Rightarrow P_{G} \sim \exp \left(-\xi^{2} / Z \sigma^{2} t\right)$
\Rightarrow Typical fluctuations $\xi \sim \sqrt{t}$
Eternal inflation dominated by $\{\sim t$

Eternal Inflation and the LPD Eternal inflation dominated by $\} \sim t$ General solution to $F-P e_{6}$:

$$
P=\exp \left(\cdots \frac{\partial^{n}}{\partial \xi^{n}}\right) P_{S}
$$

Write $P=\int \frac{d k}{2 \pi} e^{-i k \xi} \rho(k)$

$$
\begin{aligned}
w / p(k) & =\left\langle\exp \left(-k^{2} \frac{\sigma^{2}}{2} t+\sum_{n \geqslant 2}(i k)^{n} \frac{\gamma_{n}}{n!} t\right)\right. \\
& \equiv\langle\exp (i k \xi)\rangle
\end{aligned}
$$

Eternal Inflation and the LPD When $\xi=\alpha t$ for some constant α as $t \rightarrow \infty$ steepest descents \Rightarrow

$$
\begin{gathered}
P \simeq \exp (-t I(\alpha)) \\
w / I(\alpha)=\left(-i \alpha k_{*}(\alpha)-k_{*}^{2}(\alpha) \frac{\sigma^{2}}{2}\right. \\
\left.+\sum_{n>2}\left(i k_{*}(\alpha)\right)^{n} \frac{\gamma_{n}}{n!}\right) \\
\text { and }\left(i \sum^{\prime}\left(i k_{*}(\alpha)\right)^{n} \frac{\gamma_{n+1}}{n!}\right)-k_{*} \sigma^{2}=i \alpha \quad \text { Cramér's }
\end{gathered}
$$

Eternal Inflation is UV Sensitive Phase transition to eternal inflation probes the tail of the distribution Sensitive to new saddle of the park integral
Breakdown of EFT of Inflation

$$
\alpha f_{\pi}^{2}>\Lambda^{2}
$$

Outlook
Fluctuations of fields in $d S$ governed by RG in SdSET
Typical fluctuations governed by coarse grained $R G \Rightarrow C L T$
Rare fluctuations governed by LDP $\Rightarrow u v$ sensitive

