[Cotler, Jensen to appear]
[Cotler, Jensen 2302.06603]
[Cotler, Strominger 2201.11658]

Non-perturbative de Sitter Jackiw-Teitelboim Gravity

JORDAN COTLER
HARVARD SOCIETY OF FELLOWS

Pretext

Pretext

So little is known about non-perturbative quantum gravity in dS

Pretext

So little is known about non-perturbative quantum gravity in dS

Goal: Address foundational questions about dS quantum gravity in the simplest possible setting

Pretext

So little is known about non-perturbative quantum gravity in dS

Goal: Address foundational questions about dS quantum gravity in the simplest possible setting

We solve dS JT gravity non-perturbatively, providing the first exactly solvable model of dS quantum gravity

A brief history of this work

A brief history of this work

[Saad, Shenker, Stanford '19]
Solved AdS JT gravity, $R=-2$

A brief history of this work

[Saad, Shenker, Stanford '19]
Solved AdS JT gravity, $R=-2$
[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] Hartle-Hawking wavefunction Global dS amplitude Proposal for genus expansion Proposal for relation to AdS setting

A brief history of this work

[Saad, Shenker, Stanford '19]
Solved AdS JT gravity, $R=-2$
[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] Hartle-Hawking wavefunction Global dS amplitude Proposal for genus expansion Proposal for relation to AdS setting

[Cotler, Jensen '19]
Inner product on asymptotic states, S-matrix Hartle-Hawking state is non-normalizable

A brief history of this work

[Saad, Shenker, Stanford '19]
Solved AdS JT gravity, $R=-2$
[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] Hartle-Hawking wavefunction Global dS amplitude Proposal for genus expansion Proposal for relation to AdS setting

[Cotler, Jensen '19]
Inner product on asymptotic states, S-matrix Hartle-Hawking state is non-normalizable

[Cotler, Jensen '23]
Global dS JT amplitude is isometric

A brief history of this work

[Saad, Shenker, Stanford '19]
Solved AdS JT gravity, $R=-2$
[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] Hartle-Hawking wavefunction Global dS amplitude Proposal for genus expansion Proposal for relation to AdS setting

[Cotler, Jensen '19]
Inner product on asymptotic states, S-matrix Hartle-Hawking state in non-normalizable

[Cotler, Jensen '23]
Global dS JT amplitude is isometric

(See also [Cotler, Strominger '22])

Summary of results

Summary of results

Carefully treat the dS JT path integral measure

Summary of results

Carefully treat the dS JT path integral measure dS JT can be viewed as a subtle continuation of AdS JT

Summary of results

Carefully treat the dS JT path integral measure
dS JT can be viewed as a subtle continuation of AdS JT

$$
g_{s}= \pm i e^{-S_{0}}
$$

Continuation of β 's

Summary of results

Carefully treat the dS JT path integral measure
dS JT can be viewed as a subtle continuation of AdS JT

$$
g_{s}= \pm i e^{-S_{0}}
$$

Continuation of β 's

Holographically dual matrix integral with $N_{\text {eff }}<0$

Three Parts

Part I
Review of dS JT gravity

Part II

Genus expansion

Part III
Discussion

Part I

Review of dS JT gravity

dS JT gravity

[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]

dS JT gravity

[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]

$$
S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{-g} \phi(R-2)-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi
$$

dS JT gravity

[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]

$$
S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{-g} \phi(R-2)-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi
$$

Global dS_{2} geometries:
[Maldacena, Turiaci, Yang '19]

dS JT gravity

 [Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]$S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{-g} \phi(R-2)-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi$
Global dS_{2} geometries:

$$
\left\{\begin{aligned}
d s^{2} & =-d t^{2}+\alpha^{2} \cosh ^{2}(t) d x^{2}, \quad x \sim x+2 \pi \\
\phi & =\phi_{0} \sinh (t)
\end{aligned}\right.
$$

dS JT gravity

[Maldacena, Turiaci, Yang '19] [Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
$S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{-g} \phi(R-2)-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi$
Global dS_{2} geometries:
$\left\{\begin{aligned} d s^{2} & =-d t^{2}+\alpha^{2} \cosh ^{2}(t) d x^{2}, \quad x \sim x+2 \pi \\ \phi & =\phi_{0} \sinh (t)\end{aligned}\right.$
No propagating degrees of freedom
Boundary gravitons (Schwarzian modes)
Moduli space

[Cotler, Jensen, Maloney '19]

dS JT gravity

 [Cotler, Jensen '19] [Cotler, Jensen '23]
[Cotler, Jensen, Maloney '19]

dS JT gravity

Boundary conditions in the far future:

dS JT gravity

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Boundary conditions in the far future:

$$
\left\{\begin{array}{l}
d s^{2}=-d t^{2}+\left(e^{2 t}+O(1)\right) d x^{2} \\
\phi=\frac{\Phi}{2 \pi} e^{t}+O(1)
\end{array}\right.
$$

dS JT gravity

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Boundary conditions in the far future:

$$
\left\{\begin{array}{l}
d s^{2}=-d t^{2}+\left(e^{2 t}+O(1)\right) d x^{2} \\
\phi=\frac{\Phi}{2 \pi} e^{t}+O(1)
\end{array}\right.
$$

dS JT gravity

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Boundary conditions in the far future:

$$
\left\{\begin{array}{l}
d s^{2}=-d t^{2}+\left(e^{2 t}+O(1)\right) d x^{2} \\
\phi=\frac{\Phi}{2 \pi} e^{t}+O(1)
\end{array}\right.
$$

dS JT gravity

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Boundary conditions in the far future:

$$
\left\{\begin{array}{l}
d s^{2}=-d t^{2}+\left(e^{2 t}+O(1)\right) d x^{2} \\
\phi=\frac{\Phi}{2 \pi} e^{t}+O(1)
\end{array}\right.
$$

$Z_{\alpha^{2}}[\varphi]=\int \frac{[d f]}{U(1)} \exp \left(\frac{i}{\pi} \int d x \Phi\left(\{f(x), x\}+\frac{\alpha^{2}}{2} f^{\prime}(x)^{2}\right)\right)$

dS JT gravity

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Boundary conditions in the far future:

$$
\left\{\begin{array}{l}
d s^{2}=-d t^{2}+\left(e^{2 t}+O(1)\right) d x^{2} \\
\phi=\frac{\Phi}{2 \pi} e^{t}+O(1)
\end{array}\right.
$$

$Z_{\alpha^{2}}[\varphi]=\int \frac{[d f]}{U(1)} \exp \left(\frac{i}{\pi} \int d x \Phi\left(\{f(x), x\}+\frac{\alpha^{2}}{2} f^{\prime}(x)^{2}\right)\right)$
$f(x+2 \pi)=f(x)+2 \pi, \quad f(x) \sim f(x)+a$
$f(x) \in \operatorname{Diff}\left(\mathbb{S}^{1}\right) / U(1)$

dS JT gravity

Boundary conditions in the far future:

$$
\left\{\begin{array}{l}
d s^{2}=-d t^{2}+\left(e^{2 t}+O(1)\right) d x^{2} \\
\phi=\frac{\Phi}{2 \pi} e^{t}+O(1)
\end{array}\right.
$$

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]

$Z_{\alpha^{2}}[\varphi]=\int \frac{[d f]}{U(1)} \exp \left(\frac{i}{\pi} \int d x \Phi\left(\{f(x), x\}+\frac{\alpha^{2}}{2} f^{\prime}(x)^{2}\right)\right)$
$f(x+2 \pi)=f(x)+2 \pi, \quad f(x) \sim f(x)+a$
$f(x) \in \operatorname{Diff}\left(\mathbb{S}^{1}\right) / U(1)$

dS JT gravity

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Boundary conditions in the far future:

$$
\left\{\begin{array}{l}
d s^{2}=-d t^{2}+\left(e^{2 t}+O(1)\right) d x^{2} \\
\phi=\frac{\Phi}{2 \pi} e^{t}+O(1)
\end{array}\right.
$$

$Z_{\alpha^{2}}[\varphi]=\int \frac{[d f]}{U(1)} \exp \left(\frac{i}{\pi} \int d x \Phi\left(\{f(x), x\}+\frac{\alpha^{2}}{2} f^{\prime}(x)^{2}\right)\right)$
$f(x+2 \pi)=f(x)+2 \pi, \quad f(x) \sim f(x)+a$
$f(x) \in \operatorname{Diff}\left(\mathbb{S}^{1}\right) / U(1)$

[Cotler, Jensen, Maloney '19]
[Cotler, Jensen '19]
[Cotler, Jensen '23]

dS JT amplitudes

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Meta-observables are S-matrix elements:

dS JT amplitudes

Meta-observables are S-matrix elements:

[Cotler, Jensen, Maloney '19]
[Cotler, Jensen '19]
[Cotler, Jensen '23]
[Cotler, Jensen, Maloney '19]

dS JT amplitudes

Sphere:
[Cotler, Jensen, Maloney '19]

dS JT amplitudes

Sphere:

[Cotler, Jensen, Maloney '19]

dS JT amplitudes

Sphere: $\bigcirc=Z_{\mathbb{S}^{2}}=e^{2 S_{0}} \times \infty$

Disk:

dS JT amplitudes

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Sphere:

Disk:

dS JT amplitudes

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Sphere: $\bigcirc=Z_{\mathbb{S}^{2}}=e^{2 S_{0}} \times \infty$

Disk:

Cylinder:

dS JT amplitudes

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Sphere: $\bigcirc=Z_{\mathbb{S}^{2}}=e^{2 S_{0}} \times \infty$

Disk:

dS JT amplitudes

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Sphere:

Disk:

pole corresponds to global dS 2 saddle
[Cotler, Jensen, Maloney '19]

dS JT amplitudes

Sphere:

Disk:

for convergence of moduli integral
pole corresponds to global dS_{2} saddle

dS JT amplitudes

Sphere:

Disk:

$$
=\frac{i}{2 \pi} \frac{\sqrt{\Phi \Phi^{\prime}}}{\Phi-\Phi^{\prime}+i \epsilon}
$$

Cylinder:
[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]

Inner product:

dS JT amplitudes

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Sphere: $\circlearrowleft=Z_{\mathbb{S}^{2}}=e^{2 S_{0}} \times \infty$

Disk:

$$
\mathcal{F}^{\Phi}=\frac{i}{2 \pi} \frac{\sqrt{\Phi \Phi^{\prime}}}{\Phi-\Phi^{\prime}+i \epsilon}
$$

Inner product:

Cylinder:
for convergence of moduli integral
pole corresponds to global dS_{2} saddle

dS JT amplitudes

[Cotler, Jensen, Maloney '19] [Cotler, Jensen '19]
[Cotler, Jensen '23]
Sphere: $\circlearrowleft=Z_{\mathbb{S}^{2}}=e^{2 S_{0}} \times \infty$

Disk:

$$
\mathcal{F}^{\Phi}=\frac{i}{2 \pi} \frac{\sqrt{\Phi \Phi^{\prime}}}{\Phi-\Phi^{\prime}+i \epsilon}
$$

Cylinder:

Inner product:

[Cotler, Jensen '19]
Some features [Cotler, Jensen '23]

Some features

 [Cotler, Jensen '23]

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)
Can understand this by decomposing time evolution

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)
Can understand this by decomposing time evolution

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)
Can understand this by decomposing time evolution

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)
Can understand this by decomposing time evolution
$\widehat{V}: \mathcal{H}_{\text {bulk }} \rightarrow \mathcal{H}_{\text {asy }} \quad$ is an isometry

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)
Can understand this by decomposing time evolution
$\widehat{V}: \mathcal{H}_{\text {bulk }} \rightarrow \mathcal{H}_{\text {asy }} \quad$ is an isometry
$\widehat{V}^{\dagger}: \mathcal{H}_{\text {asy }} \rightarrow \mathcal{H}_{\text {bulk }}$ is a co-isometry

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)
Can understand this by decomposing time evolution
$\widehat{V}: \mathcal{H}_{\text {bulk }} \rightarrow \mathcal{H}_{\text {asy }} \quad$ is an isometry
$\widehat{V}^{\dagger}: \mathcal{H}_{\text {asy }} \rightarrow \mathcal{H}_{\text {bulk }}$ is a co-isometry
$\left\{\widehat{V} \widehat{V}^{\dagger}=\widehat{\mathcal{S}}=\widehat{\Pi}\right.$
$\left\{\widehat{V}^{\dagger} \widehat{V}=\mathbb{1}\right.$

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)
Can understand this by decomposing time evolution
$\widehat{V}: \mathcal{H}_{\text {bulk }} \rightarrow \mathcal{H}_{\text {asy }} \quad$ is an isometry
$\widehat{V}^{\dagger}: \mathcal{H}_{\text {asy }} \rightarrow \mathcal{H}_{\text {bulk }}$ is a co-isometry

$$
\left\{\begin{array}{l}
\widehat{V} \widehat{V}^{\dagger}=\widehat{\mathcal{S}}=\widehat{\Pi} \\
\widehat{V}^{\dagger} \widehat{V}=\mathbb{1}
\end{array}\right.
$$

projects out initial and final states leading to singular geometries

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)

$$
\mathcal{H}_{\text {bulk }} \neq \mathcal{H}_{\text {asy }}
$$

Can understand this by decomposing time evolution $\widehat{V}: \mathcal{H}_{\text {bulk }} \rightarrow \mathcal{H}_{\text {asy }} \quad$ is an isometry
$\widehat{V}^{\dagger}: \mathcal{H}_{\text {asy }} \rightarrow \mathcal{H}_{\text {bulk }}$ is a co-isometry

$$
\left\{\begin{array}{l}
\hat{V} \widehat{V}^{\dagger}=\widehat{\mathcal{S}}=\hat{\Pi} \\
\hat{V}^{\dagger} \widehat{V}=\mathbb{1}
\end{array}\right.
$$

projects out initial and final states leading to singular geometries

Some features

In dS JT gravity, the 1-to-1 S-matrix is a projector (!)

$$
\mathcal{H}_{\text {bulk }} \neq \mathcal{H}_{\text {asy }}
$$

Can understand this by decomposing time evolution $\widehat{V}: \mathcal{H}_{\text {bulk }} \rightarrow \mathcal{H}_{\text {asy }} \quad$ is an isometry
$\widehat{V}^{\dagger}: \mathcal{H}_{\text {asy }} \rightarrow \mathcal{H}_{\text {bulk }}$ is a co-isometry
$\left\{\widehat{V} \widehat{V}^{\dagger}=\widehat{\mathcal{S}}=\widehat{\Pi}\right.$
projects out initial and final states
$\left\{\widehat{V}^{\dagger} \widehat{V}=\mathbb{1}\right.$
Anticipated by [Cotler, Strominger '22]

dS JT amplitudes

sphere: $\bigcirc=Z_{\mathbb{S}^{2}}=e^{2 S_{0}} \times \infty$

Disk:

Inner product:

Cylinder:

$$
=\frac{i}{2 \pi} \frac{\sqrt{\Phi \Phi^{\prime}}}{\Phi-\Phi^{\prime}+i \epsilon}
$$

Part II

Genus expansion

A puzzle

A puzzle

$$
S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{-g} \phi(R-2)-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi
$$

A puzzle

$$
S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{-g} \underbrace{\phi(R-2)}-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi
$$

imposes $R=2$

A puzzle

$$
S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{-g} \underbrace{\phi(R-2)}_{\text {imposes } R=2}-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi
$$

What metrics do we sum over?

A puzzle

$$
S_{\mathrm{JT}}=\int_{\mathcal{M}} d^{2} x \sqrt{\text { imposes } R=2} \text { (} \underbrace{\phi(R-2)}-2 \int_{\partial \mathcal{M}} d x \sqrt{h} \phi(K-1)-i S_{0} \chi
$$

What metrics do we sum over?

There are no smooth Lorentzian $R=2$ metrics on general Σ

Revisiting the disk amplitude

Revisiting the disk amplitude

Revisiting the disk amplitude

\[

\]

Revisiting the disk amplitude

$$
\left\{\begin{aligned}
d s^{2} & =-\left(d \rho^{2}+\sinh ^{2}(\rho) d x^{2}\right) \\
\phi & =-i \frac{\Phi}{2 \pi} \cosh (\rho)
\end{aligned}\right.
$$

Revisiting the disk amplitude

$$
\left\{\begin{aligned}
d s^{2} & =-\left(d \rho^{2}+\sinh ^{2}(\rho) d x^{2}\right) \\
\phi & =-i \frac{\Phi}{2 \pi} \cosh (\rho)
\end{aligned}\right.
$$

Revisiting the disk amplitude

$$
\left\{\begin{aligned}
d s^{2} & =-\left(d \rho^{2}+\sinh ^{2}(\rho) d x^{2}\right) \\
\phi & =-i \frac{\Phi}{2 \pi} \cosh (\rho)
\end{aligned}\right.
$$

Revisiting the disk amplitude

$$
\left\{\begin{aligned}
d s^{2} & =-\left(d \rho^{2}+\sinh ^{2}(\rho) d x^{2}\right) \\
\phi & =-i \frac{\Phi}{2 \pi} \cosh (\rho)
\end{aligned}\right.
$$

$$
(-,-) \text { signature }
$$

$$
\text { with } R=2
$$

EAdS_{2} with $\frac{1}{\beta}=i \Phi$

Generalization to arbitrary surfaces

Generalization to arbitrary surfaces

General hyperbolic metrics in

 $(-,-)$ signature have $R=2$

Generalization to arbitrary surfaces

General hyperbolic metrics in $(-,-)$ signature have $R=2$

We find our desired surfaces using these metrics, in conjunction with analytically continuing the dilaton boundary conditions

Path integral computation

Path integral computation

The full picture can be understood with an analysis of the Teichmüller component of $S L(2, \mathbb{R})$ BF theory

Path integral computation

The full picture can be understood with an analysis of the Teichmüller component of $S L(2, \mathbb{R})$ BF theory

Two ingredients:

Path integral measure induced by $\left\langle\delta A_{1}, \delta A_{2}\right\rangle=-\left\langle\delta A_{1}, \delta A_{2}\right\rangle_{\text {usual }}$
Boundary conditions on circles have: $\left\{\begin{array}{l}\frac{1}{\beta_{F}}=i \Phi_{F}-\epsilon \\ \frac{1}{\beta_{P}}=-i \Phi_{P}-\epsilon\end{array}\right.$

Path integral computation

The full picture can be understood with an analysis of the Teichmüller component of $S L(2, \mathbb{R})$ BF theory

Two ingredients:

Path integral measure induced by $\left\langle\delta A_{1}, \delta A_{2}\right\rangle=-\left\langle\delta A_{1}, \delta A_{2}\right\rangle_{\text {usual }}$
Boundary conditions on circles have: $\left\{\begin{array}{l}\frac{1}{\beta_{F}}=i \Phi_{F}-\epsilon \\ \frac{1}{\beta_{P}}=-i \Phi_{P}-\epsilon\end{array}\right.$
Note: $\operatorname{Re}(\beta)<0$ instructs us to rotate the integration contour of the Schwarzian modes

Path integral computation

The full picture can be understood with an analysis of the Teichmüller component of $S L(2, \mathbb{R}) \mathrm{BF}$ theory

Two ingredients:

Path integral measure induced by $\operatorname{Pf}(-\Omega)$
Boundary conditions on circles have: $\left\{\begin{array}{l}\frac{1}{\beta_{F}}=i \Phi_{F}-\epsilon \\ \frac{1}{\beta_{P}}=-i \Phi_{P}-\epsilon\end{array}\right.$
Note: $\operatorname{Re}(\beta)<0$ instructs us to rotate the integration contour of the Schwarzian modes

Topological recursion

Topological recursion

Euclidean AdS JT amplitudes satisfy topological recursion

Topological recursion

Euclidean AdS JT amplitudes satisfy topological recursion

dS JT also satisfies topological recursion with a new spectral curve, corresponding to the density of states $\rho_{0}(E)=\frac{1}{4 \pi^{2}} \sin (2 \pi \sqrt{-E}) \Theta(-E)$

Topological recursion

Euclidean AdS JT amplitudes satisfy topological recursion
dS JT also satisfies topological recursion with a new spectral curve, corresponding to the density of states $\rho_{0}(E)=\frac{1}{4 \pi^{2}} \sin (2 \pi \sqrt{-E}) \Theta(-E)$

Generates analytically continued Weil-Petersson volumes

Topological recursion

Euclidean AdS JT amplitudes satisfy topological recursion
dS JT also satisfies topological recursion with a new spectral curve, corresponding to the density of states $\rho_{0}(E)=\frac{1}{4 \pi^{2}} \sin (2 \pi \sqrt{-E}) \Theta(-E)$

Generates analytically continued Weil-Petersson volumes
$Z_{g, n_{F}, n_{P}}=(-1)^{g+1} e^{S_{0} \chi} \int_{0}^{\infty} \prod_{j=1}^{n=n_{F}+n_{P}}\left(-d \alpha_{i}\right)^{2} V_{g, n}\left(i \alpha_{1}, \ldots, i \alpha_{n}\right) Z_{+}\left(\alpha_{1} ; \Phi_{1}\right) \cdots Z_{+}\left(\alpha_{n_{F}} ; \Phi_{n_{F}}\right)$
$Z_{ \pm}(\alpha ; \Phi)=\sqrt{\frac{ \pm i \Phi}{2 \pi}} e^{ \pm i \alpha^{2} \Phi}$

Matrix model

Matrix model

dS JT can also be viewed as a continuation of the Euclidean AdS JT matrix model of [Saad, Shenker, Stanford '19]

Matrix model

dS JT can also be viewed as a continuation of the Euclidean AdS JT matrix model of [Saad, Shenker, Stanford '19]

Two ingredients:

Continuation of genus counting parameter $S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2}$
Parameters in single-trace insertions: $\left\{\begin{array}{l}\frac{1}{\beta_{F}}=i \Phi_{F}-\epsilon \\ \frac{1}{\beta_{P}}=-i \Phi_{P}-\epsilon\end{array}\right.$

Matrix model

dS JT can also be viewed as a continuation of the Euclidean AdS JT matrix model of [Saad, Shenker, Stanford '19]

Two ingredients:

Continuation of genus counting parameter $S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2}$
Parameters in single-trace insertions: $\left\{\begin{array}{l}\frac{1}{\beta_{F}}=i \Phi_{F}-\epsilon \\ \frac{1}{\beta_{P}}=-i \Phi_{P}-\epsilon\end{array}\right.$
Note: $e^{S_{0}} \rightarrow i e^{S_{0}}$ so the effective string coupling is pure imaginary

Matrix model

dS JT can also be viewed as a continuation of the Euclidean AdS JT matrix model of [Saad, Shenker, Stanford '19]

Two ingredients:

Continuation of genus counting parameter $S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2}$
Parameters in single-trace insertions: $\left\{\begin{array}{l}\frac{1}{\beta_{F}}=i \Phi_{F}-\epsilon \\ \frac{1}{\beta_{P}}=-i \Phi_{P}-\epsilon\end{array}\right.$
Note: $e^{S_{0}} \rightarrow i e^{S_{0}}$ so the effective string coupling is pure imaginary Implements $N^{2}=N_{\text {eff }} \rightarrow-N_{\text {eff }}$

Matrix model

dS JT can also be viewed as a continuation of the Euclidean AdS JT matrix model of [Saad, Shenker, Stanford '19]

Two ingredients:

Continuation of genus counting parameter $S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2}$
Parameters in single-trace insertions: $\left\{\begin{array}{l}\frac{1}{\beta_{F}}=i \Phi_{F}-\epsilon \\ \frac{1}{\beta_{P}}=-i \Phi_{P}-\epsilon\end{array}\right.$
Note: $e^{S_{0}} \rightarrow i e^{S_{0}}$ so the effective string coupling is pure imaginary Implements $N^{2}=N_{\text {eff }} \rightarrow-N_{\text {eff }} \quad$ (c.f. [Anninos, Hartman, Strominger '11])

Borel resummation

Borel resummation

$e^{2 S_{0}} \rightarrow-e^{2 S_{0}}$ leads to alternating signs in genus expansions, which can render them Borel resummable:

Borel resummation

$e^{2 S_{0}} \rightarrow-e^{2 S_{0}}$ leads to alternating signs in genus expansions, which can render them Borel resummable:

$$
\boldsymbol{n}=\mathbf{0}: \quad \sum_{g=2}^{\infty} Z_{g, 0} \sim \sum_{g=2}^{\infty}(-1)^{g} e^{(2-2 g) S_{0}} \frac{\left(4 \pi^{2}\right)^{2 g-\frac{5}{2}}}{2^{1 / 2} \pi^{3 / 2}} \Gamma\left(2 g-\frac{5}{2}\right)
$$

Borel resummation

$e^{2 S_{0}} \rightarrow-e^{2 S_{0}}$ leads to alternating signs in genus expansions, which can render them Borel resummable:

$$
\begin{array}{ll}
\boldsymbol{n}=\mathbf{0}: & \sum_{g=2}^{\infty} Z_{g, 0} \sim \sum_{g=2}^{\infty}(-1)^{g} e^{(2-2 g) S_{0}} \frac{\left(4 \pi^{2}\right)^{2 g-\frac{5}{2}}}{2^{1 / 2} \pi^{3 / 2}} \Gamma\left(2 g-\frac{5}{2}\right) \\
\boldsymbol{n}=\mathbf{1}: & V_{g, 1}(2 \pi i \alpha) \sim \frac{\left(4 \pi^{2}\right)^{2 g-\frac{3}{2}}}{\pi^{2}} \Gamma\left(2 g-\frac{3}{2}\right) \frac{\sin \left(\sqrt{\frac{\pi \alpha}{2}}\right)}{\sqrt{\alpha}}
\end{array}
$$

Borel resummation

$e^{2 S_{0}} \rightarrow-e^{2 S_{0}}$ leads to alternating signs in genus expansions, which can render them Borel resummable:
$n=0: \quad \sum_{g=2}^{\infty} Z_{g, 0} \sim \sum_{g=2}^{\infty}(-1)^{g} e^{(2-2 g) S_{0}} \frac{\left(4 \pi^{2}\right)^{2 g-5}}{2^{1 / 2} \pi^{3 / 2}} \Gamma\left(2 g-\frac{5}{2}\right)$
$n=1: \quad V_{g, 1}(2 \pi i \alpha) \sim \frac{\left(4 \pi^{2}\right)^{2 g-\frac{3}{2}}}{\pi^{2}} \Gamma\left(2 g-\frac{3}{2}\right) \frac{\sin \left(\sqrt{\frac{\pi \alpha}{2}}\right)}{\sqrt{\alpha}}$
There can be additional doubly non-perturbative effects not captured by resurgence (e.g. eigenvalue instantons)

Another example: double-scaled GUE

Another example: double-scaled GUE

Can apply our continuations:

$$
\begin{aligned}
& S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2} \\
& \beta<0 \quad(\text { which probes } E<0)
\end{aligned}
$$

Another example: double-scaled GUE

Can apply our continuations:

$$
\begin{aligned}
& S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2} \\
& \beta<0 \quad(\text { which probes } E<0)
\end{aligned}
$$

Non-perturbative density of states:

$$
\langle\rho(E)\rangle=e^{\frac{2 S_{0}}{3}}\left(\mathrm{Ai}^{\prime}(\xi)^{2}-\xi \operatorname{Ai}(\xi)^{2}\right) \sim e^{S_{0}} \sqrt{E}, \quad \xi=-e^{\frac{2 S_{0}}{3}} E
$$

Another example: double-scaled GUE

Can apply our continuations:

$$
\begin{aligned}
& S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2} \\
& \beta<0 \quad(\text { which probes } E<0)
\end{aligned}
$$

Non-perturbative density of states:

$$
\begin{aligned}
\langle\rho(E)\rangle & =e^{\frac{2 S_{0}}{3}}\left(\mathrm{Ai}^{\prime}(\xi)^{2}-\xi \operatorname{Ai}(\xi)^{2}\right) \sim e^{S_{0}} \sqrt{E}, \quad \xi=-e^{\frac{2 S_{0}}{3}} E \\
\quad & e^{\frac{2 S_{0}}{3}}\left(\mathrm{Ai}^{\prime}(-\xi)^{2}+\xi \operatorname{Ai}(-\xi)^{2}\right) \sim e^{S_{0}} \sqrt{-E}
\end{aligned}
$$

Another example: double-scaled GUE

Can apply our continuations:

$$
\begin{aligned}
& S_{0} \rightarrow S_{0}+i \frac{3 \pi}{2} \\
& \beta<0 \quad(\text { which probes } E<0)
\end{aligned}
$$

Non-perturbative density of states:

$$
\begin{aligned}
\langle\rho(E)\rangle & =e^{\frac{2 S_{0}}{3}}\left(\mathrm{Ai}^{\prime}(\xi)^{2}-\xi \mathrm{Ai}(\xi)^{2}\right) \sim e^{S_{0}} \sqrt{E}, \quad \xi=-e^{\frac{2 S_{0}}{3}} E \\
\quad & e^{\frac{2 S_{0}}{3}}\left(\mathrm{Ai}^{\prime}(-\xi)^{2}+\xi \operatorname{Ai}(-\xi)^{2}\right) \sim e^{S_{0}} \sqrt{-E}
\end{aligned}
$$

Flips cut, so it only makes sense to probe model with $\beta<0$

Part III

Discussion

Recap of results

Solved dS JT non-perturbatively in the genus expansion
Carefully treated the dS JT path integral measure dS JT can be viewed as a subtle continuation of AdS JT

$$
g_{s}= \pm i e^{-S_{0}}
$$

Continuation of β 's
Holographically dual matrix integral with $N_{\text {eff }}<0$

Comments and speculations

dS JT gravity has isometric (and co-isometric) S-matrix evolution at leading order in the genus expansion, but this is broken at higher genus

The theory is UV-complete, but only approximately unitary / isometric

What happens doubly non-perturbatively?
Related to, but different than, the factorization problem in Euclidean AdS

Our analysis uncovers new features of the de Sitter holographic dictionary

More physics to mine out of the model

