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Introduction, motivation and summary

Consider the SYK model

H =
∑
i1...ip

Ji1...ipψi1 . . . ψip , log q =
p2

N

Its low energy physics is governed by the Schwarzian, which is
holographically dual to R + 2 = 0 2d JT dilaton gravity.
This duality has learned us many things about quantum gravity in AdS.

Interestingly there is another limit of SYK known as double scaled SYK
with q finite for N → ∞ which is also exactly solvable.
We know all amplitudes of interesting operators analytically (Berkooz,
Isachenkov, Narovlansky, Torrents, Narayan, Simon).

This raises the question whether DSSYK also has some tractable dual
bulk gravitational description?
One reason to pursue this, and perhaps the reason I am here today, there
are hints of duality between DSSYK and dS quantum gravity (Susskind,
Lin, Rahman).
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Will try to convince you that DSSYK does indeed have a simple bulk
gravitational dual (with features of dS).

To motivate this I will introduce and study the q-Schwarzian theory.

Deformation of Schwarzian 1d path integral that depends on (complex)
parameter q.

Depending on q will argue q-Schwarzian has the following bulk dual 2d
dilaton gravity description

q > 1 ⇔ V (Φ) = sin(2Φ)

|q| = 1 ⇔ V (Φ) = sinh(2Φ) Liouville gravity

q = 1 ⇔ V (Φ) = 2Φ JT gravity

Furthermore the q > 1 q-Schwarzian is equivalent to the chord diagram
description of DSSYK.
Will give more detailed action of gravity theories soon.
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There are several reasons why these new dualities seem interesting.

1. Solvable examples of non AAdS holography. As we’ll see.

2. For DSSYK classical bulk has cosmological horizon and R = 2 dS
region. Certain ranges of temperature bulk becomes pure dS. Potential
dS holography from a microscopic model.
Currently certainly not well enough understood to make strong claims.

3. DSSYK is UV completion (spectrum caps off) of JT gravity

E

S(E )

SJT(E ) = 2πE 1/2

For instance partition function remains finite for β = 0. So UV complete
bulk gravitational theory by construction.
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Outline

In the remainder will provide evidence for dualities.

1. Classical solutions (and introduction to) 2d dilaton gravity models

2. Summary of results from the q-Schwarzian path integral

3. From dilaton gravity to q-Schwarzian via gauge theory

4. Matching classical solutions for |q| = 1

Intermezzo. Lightning introduction to DSSYK

5. Matching classical solutions for q > 1 and fake temperature

Emphasize work in progress so many things not completely understood!
Unfamiliar audience please stop me when something is unclear.
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Classical solutions dilaton gravity models

First we discuss classical solutions of proposed gravity duals.
Reasons

1. Clarify previous motivation about dS and non AAdS holography

2. Set benchmarks for q-Schwarzian (and DSSYK) to compare with

Dilaton gravity in 2d Euclidean (definition)

exp

(
1

2

ˆ
dx

√
g

(
ΦR + V (Φ)

)
+

ˆ
dτ

√
hK + counter

)
Classical solution (Witten) gauge Φ = r

ds2 = F (r)dτ 2 +
1

F (r)
dr2 , 0 < τ < β

F (r) =

ˆ r

Φh

dΦV (Φ)

√
gR = −V ′

√
hK =

1

2
V
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Solutions with fixed Φh area and β have conical defect at horizon
√
gR = −V ′ + (4π − βV (Φh)) δ(x − xh)

This follows from Gauss-Bonnet for disk shaped topology

1

4π

ˆ
dx

√
gR +

1

2π

ˆ
dτ

√
hK

!
= 1

Including the singular piece finds on-shell action

exp

(
2πΦh −

β

2
ΦhV (Φh) +

1

2

ˆ
dτ

ˆ Φb

Φh

dΦ

(
− ΦV ′(Φ) + V (Φ)

)
+

1

2

ˆ
dτV (Φb) + counter

)
= exp

(
2πΦh + β

ˆ ∞

Φh

dΦV (Φ) + counter

)
Should think of this as partition function with dilaton as horizon area

Z (β) =

ˆ
dA exp

(
A

4G
− βE (A)

)
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DSSYK gravity q > 1

For q > 1 we propose to consider periodic potential

V (Φ) =
sin(2 log qΦ)

log q

Black hole horizon r = Φh and cosmological horizon r = π/ log q − Φh

(where Φ is maximal)

F (r) = −cos(2 log qr)

2 log q2
+

cos(2 log qΦh)

2 log q2
> 0

Classical thermodynamics (from previous slide)

exp

(
2πΦh + β

cos(2 log qΦh)

2 log q2

)
Will match this later with q-Schwarzian on shell action!

Actually mismatch with DSSYK around which end of talk centers.
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R = −2 cos(2 log qΦ)

Interesting regimes

1. Φh ∼ 0 and IR r − rh ∼ 0 we get R ∼ −2 AdS quantum gravity.

2. Φh ∼ π/2 log q reduces to R ∼ +2 dS quantum gravity.

Φ

R

1 2

Low energies zooms in close to black hole horizon (full lines).

Notice also that there is no AAdS regime.
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Liouville gravity |q| = 1

For q = eiπb
2

we consider analytic continuation of DSSYK gravity

V (Φ) =
sinh

(
2πb2Φ

)
πb2

Black hole horizon r = Φh and metric

F (r) =
cosh

(
2πb2r

)
2π2b4

−
cosh

(
2πb2Φh

)
2π2b4

Classical thermodynamics

exp

(
2πΦh − β

cosh
(
2πb2Φh

)
2π2b4

)
Will also match this later with q-Schwarzian!

10



R = −2 cos(2 log qΦ)

Φ
R

RJT = −2

Notice again this is not AAdS for instance geodesic length from horizon
to boundary is finite.

Using field redefinition this dilaton gravity is rewritten as two decoupled
Liouville systems (Stanford, Seiberg, Mertens, Turiaci. . . ). Amplitudes in
Liouville can be computed exactly using Virasoro bootstrap.
By quantizing the q-Schwarzian one recovers those same amplitudes!

The quantization is technical, will say some words about this but focus
mostly on matching the classical solutions.
The latter teaches us more about the gravity picture for DSSYK.
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Summary of results from (and intro to) the q-Schwarzian

Lorentzian q-Schwarzian is following 6d phase space path integral

ˆ T

0

dt

(
pϕϕ

′ + · · ·+ 1

2 log q2
cos(log qpϕ)−

1

log q2
µβµγe

−2ϕ−i log qpϕ

)
with

µβ =
e−2iβpβ − 1

−2iβ

Perhaps surprisingly this system has 6 conserved currents spanning two
copies of the algebra

{h, e} = e , {h, f } = −f , {e, f } =
q2ih − q−2ih

2i log q
,

with for instance

h = −1

2
pϕ + βpβ

Upon quantization becomes the Uq(SU(1, 1)) quantum group algebra.
Important for quantization see below.
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Remember we claim the following dualities

q > 1 ⇔ V (Φ) = sin(2Φ)

|q| = 1 ⇔ V (Φ) = sinh(2Φ) Liouville gravity

q = 1 ⇔ V (Φ) = 2Φ JT gravity

where we furthermore claim q > 1 q-Schwarzian is identical to DSSYK.

Now I summarize which new evidence we found for these dualities.
Then detail pieces of this evidence (rest of talk).

1. Heuristic derivation dilaton gravity equals q-Schwarzian through first
order formulation ∼ topological gauge theory

2. The classical solutions q-Schwarzian match solutions dilaton gravity.

3. Classical solution q-Schwarzian matches solutions DSSYK (large p).
Naively there is mismatch but this can be resolved (end of talk).
Resolution is physically crucial explaining origin of “fake temperature”
(Stanford, Lin, Susskind). Bulk resolution to be understood. . .
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Taste of quantization

4. The q-Schwarzian can be quantized exactly and the results match
exactly with the DSSYK amplitudes.
Similarly for |q| = 1 they match the Liouville gravity amplitudes.

Will focus on 1-3 but first small taste of how quantization works q > 1.

It is not essential to follow this technical intermezzo for rest of talk.
Key point is upon quantization currents satisfy Uq(SU(1, 1)) algebra

[H,E ] = E , [H,F ] = −F , [E ,F ] =
q2H − q−2H

q − q−1

and q-Schwarzian Hamiltonian equals Casimir of quantum group

H =
q2H+1 + q−2H−1

(q − q−1)2
+ FE

Moreover ϕ, β, γ are coordinates of quantum group with group elements

g = eγFq−2 e
2ϕH eβEq2

2d
=

(
eϕ eϕβ
γeϕ e−ϕ + γeϕβ

)
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Thus q-Schwarzian is “quantum mechanics on a quantum group”.
As usually this means the wavefunctions of this quantum mechanics are
the representation matrices of the quantum group

ψEµ1µ2(g) = ⟨g |E µ1µ2⟩ = RE µ1µ2(g)

Can be computed by hand by solving differential equations and match
wavefunctions of DSSYK for q > 1 (Blommaert, Mertens, Yao) and
Liouville gravity for |q| = 1 (Mertens, Yale)

Extra important ingredient for this match with gravity and DSSYK is
q-Schwarzian should be viewed as having constraint. Classically

ei log qhf =
1

2 log q

These become analogous to Brown-Henneaux boundary conditions in
gravity. More on this later.
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OT Some details for folks familiar with DSSYK?

Dealing with constraints can argue wavefunctions become independent of
β, γ

ψE (ϕ) = ⟨ϕ|E ⟩ = RE ii(ϕ)

Hamiltonian becomes DSSYK transfer matrix

H = qe i log qpϕ + (q−1 − qe−2ϕ)e−i log qpϕ

One can furthermore argue that ϕ is effectively discretized

ϕ = n log q

then the solutions for the wavefunctions indeed match DSSYK answer

ψE (n) = Hn(cos(θ)|q2) , E (θ) = − cos(θ)

2 log q2

16



From dilaton gravity to q-Schwarzian via gauge theory

Remainder of the talk will focus on points 1-3 slide 13.

First gauge theory derivation from dilaton gravity to q-Schwarzian.
This too can be skipped (independent of classical solution discussion).

Introducing torsion constraints and appropriate boundary/counterterms
dilaton gravity action slide 6 vielbein formulation

exp

(ˆ (
− Φdω +

sin(2 log qΦ)

2 log q
e0 ∧ e1+Φ0de

0 − Φ0ω ∧ e1 + . . .

)
+

ˆ
dτ

(
− Φωτ +Φ0e

0
τ +Φ1e

1
τ − Φ2

0 +Φ2
1 +

cos(2 log qΦ)

2 log q2

))
Field redefinition

Φ = −h , Φ0 = x0 , Φ1 = x1 , AH = ω , A0 = e1 , A1 = e0

and introducing notation

{h, x0} = −x1 , {h, x1} = −x0 , {x0, x1} =
sin(2 log qh)

2 log q
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this becomes Poisson sigma model

ˆ ∞

0

dr

ˆ
dτ

(
− (Ar )

AJ̇A + (Aτ )
A

(
J ′A + {JA, JB}(Ar )

B

))
−
ˆ

dτ H(JA)

topological gauge theory generalization of BF (weakly coupled 2d
Yang-Mills) to quantum groups (and beyond).

Integrate out Lagrange multiplier AA
τ gives constraint (radial DE)

J ′A = −{JA, JB}(Ar )
B

Known (Cattaneo, Felder) that resulting classical phase space is 6d and
includes JA(0) with induced Poisson brackets matching with q-Schwarzian

{h(0), x0(0)} = −x1(0) , {x0(0), x1(0)} =
sin(2 log qh(0))

2 log q
, . . .

We found simple way to determine full 6d classical phase space (solve
constraints)
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1. Introduce fields xA along with JA.

2. Define fields pA by q-Schwarzian expression for currents in terms of
momenta and coordinates JA(xB , pB).

3. Solutions to constraint with J ′A = 0 can be constructed as follows
a. Choose xA(r) and pB(r) classical solution radial Hamiltonian
evolution with H(JA(xB , pB)) q-Schwarzian Hamiltonian.
b. The solution to the constraint equation is now

(Ar )
C = −

∑
A

x ′A
dpA
dJC

= − dH

dJC
for Lie groups Ar = g ′g−1

Indeed on these configurations we have

−{JA, JB}(Ar )
B = {JA, JB}

dH

dJB
= J ′A = 0

Thus 6d classical phase space can be spanned by xA(0) and pA(0)
classical initial conditions radial evolution and can show they inherit
canonical Poisson brackets

{xA(0), pB(0)} = δAB

19



Hamiltonian on this phase space comes from boundary term H(JA(0)) on
slide 18 thus one obtains q-Schwarzian quantum mechanics. □

More heuristic but quicker way to appreciate duality is that inserting

AC =
∑
A

dpA
dJC

dxA

with JC (xA, pA) in Poisson sigma model

ˆ ∞

0

dr

ˆ
dτ

(
− (Ar )

AJ̇A+(Aτ )
A

(
J ′A+{JA, JB}(Ar )

B

))
−
ˆ

dτ H(JA)

one immediately recovers q-Schwarzian

ˆ
dτ

(∑
A

pAẋA −H(JA(xB , pB))

)
□-ish
For Lie groups rigorous because bulk localizes to A = g−1dg .
Here localization is less obvious therefore this slide is heuristic.
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Boundary conditions

One result of derivation is concrete mapping bulk to boundary variables.

Can be used to translate q-Schwarzian constraint

ei log qhf =
1

2 log q

to the gravitational boundary condition (case q = eiπb
2

)

F (Φbdy)
1/2e−πb

2Φbdy =
1

2πb2

Inspecting the classical solutions Liouville gravity on slide 10 one sees this
determines the boundary location as

Φbdy = ∞

In the JT limit q = 1 this becomes the familiar boundary condition

F (Φbdy)
1/2 =

1

ε
, ε→ 0
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Summary holographic duality between q-Schwarzian and dilaton gravity

q-Schwarzian

particle on

Uq(SU(1, 1))

constraint

ei log qhf = 1
2 log q

AC = dpA
dJC

dxA

gauge theory

vielbein formulation

holography

constraints

√
he−i log qΦ = 1

2 log q

boundary conditions

dilaton gravity

V (Φ) = sin(2 log qΦ)
2 log q

Remainder: discuss classical solutions q-Schwarzian and compare with
Liouville gravity and DSSYK.
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Classical solutions |q| = 1 q-Schwarzian

Remember Lorentzian q-Schwarzian action

ˆ T

0

dt

(
pϕϕ

′ + · · ·+ 1

2 log q2
cos(log qpϕ)−

1

log q2
µβµγe

−2ϕ−i log qpϕ

)
with

µβ =
e−2iβpβ − 1

−2iβ

Rescaling iπb2pα → pα and going to Euclidean times dt = iπb2dτ

exp

(
1

πb2

ˆ β/πb2

0

dτ

(
pϕϕ

′ + · · ·+ 1

2
cos(pϕ)− µβµγe

−2ϕ−ipϕ

))
For b ≪ 1 the theory behaves semiclassically and saddle is dominant.
Same regime where bulk action has large prefactor.

The classical EOM are just Hamilton equations.
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Playing around with the 6 Hamilton equations can reduce to one equation

(1− (p′′ϕ/p
′
ϕ)

2)1/2 = − 1

p′ϕ
(p′′ϕ/p

′
ϕ)

′

with solution

p′ϕ =

√
1 + c2 + sin(cτ + d)

1 + 1/c2 cos2(cτ + d)

introducing
c = sinh(α)

this simplifies

p′ϕ =
1

2

sinh2(α)

sinh2(α) + cos2(sinh(α)τ/2 + b)

e−2ϕ =
sin(iα)2

sin2(sinh(α)τ/2 + b + iα/2)

Can compare to classical limit two-point function Liouville gravity
e2ϕ∆.
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Superficial calculation suggests match plausible but we still have to
work out the details.

Looking at solutions integration constant α determines their period

0 < τ < 2π/ sinh(α)

The energy of the solution depends on period α as

E (α) =
1

π2b4

(
− 1

2
cos(pϕ) + µβµγe

−2ψ

)
=

cosh(α)

2π2b4

Classical entropy for fixed energy α computed as

S(α) =
i

πb2

ˆ 2π/ sinh(α)

0

dτ
∑
i

piq
′
i = − 1

b2
log(2) +

α

b2

Relabeling α match exactly partition function Liouville gravity slide 10

exp

(
− 1

b2
log(2) + 2πΦh − β

cosh
(
2πb2Φh

)
2π2b4

)
Okay good.
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Intermezzo. Lightning introduction to DSSYK

Now what about (arguably) more interesting case q > 1 DSSYK?

First, some relevant fact about DSSYK to compare with.
Observables computed exactly via chord diagram (Berkooz, Isachenkov,
Narovlansky, Torrents, Narayan, Simon).

β

n = 5

=

ˆ π

0

dθ eS(θ)−βE(θ)

Number n chords on time slice and remember from quantization

ϕ = n log q

Crucially number of chords positive (obvious), therefore

ϕ > 0
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Remember this constraint for later!

In classical regime log q ≪ 1 one finds (Goel, Narovlansky, Verlinde)

Z (β) =

ˆ π

0

dθ exp

(
πθ

log q
− θ2

log q
+ β

cos(θ)

2 log q2

)
This mismatches naive gravity calculation slide 8 θ = 2 log qΦh?!

Zgrav(β)
?
=

ˆ π

0

dθ exp

(
πθ

log q
+ β

cos(θ)

2 log q2

)
Help comes because will actually find similar discrepancy in DSSYK
versus naive q-Schwarzian.
In case of q-Schwarzian we found resolution. Which I will soon present.

Translation of resolution to gravity not yet understood.

But first second data point DSSYK to compare with q-Schwarzian. . .
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Can compute correlators of operators product s fermions with ∆ = s/q

τ

β − τ

O∆ O∆

=

ˆ π

0

dθ1 e
S(θ1)−(β−τ)E(θ1)

ˆ π

0

dθ2 e
S(θ2)−τE(θ2)

+∞∑
n=0

ψE(θ1)(n)ψE(θ2)(n)q
−2n∆

=

ˆ π

0

dθ eS(θ)−βE(θ) sin2∆(θ)

sin2∆(sin(θ)τ/2 + θ)

remembering ϕ = n log q slide 16 this computes expectation value e−2ϕ∆

so one finds classically (Goel, Narovlansky, Verlinde, Stanford, Lin)

e−2ϕ =
sin2(θ)

sin2(sin(θ)τ/2 + θ)

Back to the q-Schwarzian now!
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Classical solutions q > 1 DSSYK q-Schwarzian

Obtains analytic continuation solutions for |q| = 1 slide 24 iα→ θ and
τ → iτ

e−2ϕ =
sin2(θ)

sin2(sin(θ)τ/2 + θ)

which exactly matches DSSYK calculation (quite nontrivial check).
Integration constant b choice of time origin.

The energy of classical orbit matches with DSSYK and with gravity

E (θ) =
1

log q2

(
− 1

2
cos(pϕ) + µβµγe

−2ψ

)
= − cos(θ)

2 log q2

The naive period of this solution is

0 < τ < 2π/ sin(θ)

resulting in entropy

S(θ) =
i

log q

ˆ 2π/ sin(θ)

0

dτ
∑
i

piq
′
i =

iπ

log q
log(2) +

πθ

log q

29



which by construction reproduces thermodynamics

β

log q
?
=

2π

sin θ

this matches with naive gravity calculation slide 8

Zqsch(β) = Zgrav(β)
?
=

ˆ π

0

dθ exp

(
πθ

log q
+ β

cos(θ)

2 log q2

)
but period mismatches with DSSYK calculation slide 27?!

Then what is resolution of this tension?
We still must impose constraint from exact quantum theory

ϕ > 0

on our classical solutions!
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Plot classical solution

τ

ϕ

ϕ > 0

allowed

β βnaive

So ϕ > 0 constrains solution to shorter interval (endpoints identified)!

0 < τ <
2π − 4θ

sin(θ)

Therefore correct classical period aka temperature is actually

β

log q
!
=

2π − 4θ

sin(θ)

This does match DSSYK thermodynamics!
Known classical solution two-point DSSYK also limited to this interval!
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Some comments about this

1. For q > 1 regardless of constraining ϕ > 0 this is periodic path.
For |q| = 1 no other (real) identification except naive one

e−2ϕ =
sin(iα)2

sin2(sinh(α)τ/2 + iα/2)

Fundamental reason? Want to understand better (Stanford, Lin).
Maximal vs sub-maximal chaos. Periodic orbit interpretation?

2. This shorter period reason for distinction between temperature

β

log q
=

2π − 4θ

sin(θ)

and fake temperature or tomperature (or your favorite) (Susskind, Lin,
Rahman)

βnaive
log q

=
2π

sin(θ)
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The latter determines characteristic time for physics for instance decay

e−2ϕ∆ ∼ ⟨O∆(0)O∆(t)⟩ ∼ exp

(
− 2π log q

βnaive
∆ t

)
notice also for β = 0 decay time remains finite βnaive = 2π log q.
The latter feature is expected of dS space.

Main open question how shorter period constraint ϕ > 0 q-Schwarzian
translates back to gravity description??
Here any resemblance of factual statements from my side stops. . .

In some sense having a smooth horizon implies βnaive = β since Rindler
boost identification, hence fundamental tension with black hole horizon?
Some defect sourcing offset between β and βnaive?
Note role of observers in dS important there to understand max mixed
β = 0 state but finite βnaive = βdS (Chandrasekaran, Longo, Pennington,
Witten).
Our boundary observer (q-Schwarzian) measures similar physics. . .
Maybe similar logical makes our (semi)classical gravity description work?
Stay tuned. . .
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Summary

Depending on q q-Schwarzian has the following bulk dual 2d dilaton
gravity description

q > 1 ⇔ V (Φ) = sin(2Φ)

|q| = 1 ⇔ V (Φ) = sinh(2Φ) Liouville gravity

q = 1 ⇔ V (Φ) = 2Φ JT gravity

Furthermore the q > 1 q-Schwarzian is equivalent to the chord diagram
description of DSSYK.

Match q-Schwarzian with DSSYK because restriction ϕ > 0.
Implies difference between temperature and effective temperature!

How does restriction or different temperatures translate to gravity?
Or how does the gravity description explain temperature?
Once duality understood could attempt probing R > 0 regions.

Thanks.
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