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* On Calabi-Yau: thanks to supersymmetry the problem becomes algebraic, need to stabilize

many massless modes (moduli) with perturbative/non perturbative effects (KKLIT, LVS, ...)

[Kachru, Kallosh, Linde, Trivedi ‘03, ....,
....; Demirtas, Kim, McAllister, Moritz, Rios-Tascon, ‘22]

* On negatively-curved spaces, use quantum effects (Casimir
energies) for power-law stabilization. No moduli thanks to rigidity Vest

of hyperbolic spaces [GBDL, Silverstein, Torroba, 21]

(88, 4, Co )

* |In progress: i) use ML methods to compute further details of the
geometry/physics, ii) explicit entropy counts and axion physics in

these models [GBDL, Silverstein, Torroba, in progress] R, B, <6

 Other classical examples with O-planes and warping gradients (sjjerstein, Torroba, Dodelson, Dong “13:
Cordova, GBDL, Tomasiello, ‘18 ‘19, ]

 Many other scenarios with interplay of classical and stringy effects

[...]
* Lesson: 4d physics depends on the geometry of extra dimensions
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 Recently, the TT + A\, deformation of holographic CFTs suggests how to construct holographic
descriptions of observer patches of dS;, including entropy counts and finiteness of spectrum.

[Zamolodchikov, ‘04; Smirnov, Zamolodchikov, ‘16
Cavaglia, Negro, Szecsenyi, Tateo, ‘16,

McGough, Mezei, Verlinde, ‘16; Kraus, Liu, Marolf, ‘18;
Gorbenko, Silverstein, Torroba, ‘18; Lewkowycz, Liu, Sllverstein, Torroba, ‘19;
Shyam, ‘21; Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21,

]

* Top-down and bottom-up are related by explicit uplifts of AdS/CFT, thermal mixing among
internal SPacCesS [Dong, Horn, Silverstein, Torroba, ‘10; Silverstein, ‘22]

 [oday’s talk: review of this framework and extension to include local bulk matter.

e [Time permitting, comment on extension of hyperbolic dS with ML]
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2) Integrability of the deformation: known deformation of the energy spectrum

« For a CFT on a cylinder with size L (and zero momentum)
A 2
= TYEL0,E, — 0.€, + 58” = ()



« On the gravity side, consider a bounded region of AdS; McGough, Mezel, Verlinde, "16; Kraus, Liu, Marolf, "18]
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« On the gravity side, consider a bounded region of AdS; McGough, Mezel, Verlinde, "16; Kraus, Liu, Marolf, "18]
[cf. Guica, Monten, ‘19]

1 ) Boundary action for D. problem,

2 1
_ 3. | 2. L -
S = 162Gy JM3d X\/—8 (R | f2> $2Gn J'6M3d X\/—8 <K y minimal counterterm

) )
dSM3 = dSM2
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* Define the Brown-York stress quasi-local stress-energy tensor

2 050n sh 1 1
L, = - = K, —8.,K+=8, [Brown, York ‘93
vV —8 ogH SrGy r Balasubramanian, Kraus, ‘99]

1) Using the transverse Einstein equation (“radial”) gives the trace formula

T = = 32t GNTT R

37
2 Gy

* Agrees with the QFT trace formula using the dictionary A=8Gy, ¢

e If M, is a cylinder with radius-size L, and define the dimensionless energy

=T = L[dg\/geeui”szj

2) Same equation for the energy levels as function of y (L changes).
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e Differential equations for the energy levels T -
(no momentum) TYEOLE, — O\, + —g? =



* [The general local solution is

1
e(y) = —
y

(1 + /1 — 4C1y)

y =



1 A
» The general local solutionis  &(y) = — (1 = \/7’1 — 4C1Y) y =

Ty L2
e FordS (n = — 1), the trajectory cannot start at y = (). Piece-wise trajectories starting from
AdS:
Cosmic horizon patch Pole patch
(Dressed A ~ £ black hole microstates) (Dressed A = 0 vacuum)

yo > 1

CF l( CH patch CFT Pole patch
(A=~F) (A =0)

524(14—\/7]—{—...) «—— related by £/ — 52%(1—\/77—}—...)

[Picture from Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21]



 How to build the Cosmic Horizon patch [Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21]
2 2 f2

r —r
hdf? + dr? + r2d6?
£? rr—rf

B 1 | | r,%
wz= gy |1\

o
dSgr, =
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T 2y \/ & T \/1 3
e The horizon of a BTZ black hole with r;,, = £ looks the same as the dS cosmic horizon
L \
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 How to build the Cosmic Horizon patch [Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21]

~1
rt—r £ 2 re 2 re 2, 202
dSl%TZ — - dt? + o dr? + r2d6>? ds;o=—11 s dr-+ | 1 s dr- + r-df
1 I’]% r: O 1 f2
8BTZ_2]Z_2y 1—\/1—5 'Y'.:.\(‘\,\(— —» 8dS=27z'2y 1+\/1_?
e The horizon of a BTZ black hole with r;,, = £ looks the same as the dS cosmic horizon
. . ‘ L ) < _ ~ 3
[Dong, Silverstein, Torroba, ‘18] X » A = /é \l-“(o = o2
» Join the deformation with# = 1 to theone aty = — 1 ,a N
at this locus. Then continue withn = — 1 ' ]
=0

C
. States with A > — 4+ O(1) have formally complex energies, and are discarded from the theory

* The theory has a finite number of states: discrete and bounded spectrum

C
, States with A < — are real but discontinuous

6



TT + A\,: way to deform holographic CFT to capture the physics of pure gravity on

bounded regions of dS3 [Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21
Shyam, ‘21]

It reproduces the Gibbons-Hawking entropy of dS, including logarithmic

corrections
[Gibbons, Hawking ‘77, Anninos, Denef, Law, Sun, ‘20]

Produces a finite theory (type | operator algebra)

[cf. Chandrasekaran, Longo, Pennington, Witten ‘22]

Current limitations, only pure gravity; discontinuity the A << ¢/6 levels

Next: how to include bulk matter and address these issues
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[Hartman, Kruthoff, Shaghoulian, Tajdini, ‘18; Taylor, ‘18]

o Start from the gravity side. E.g. with a scalar field:

|
S = Sgrav — I\/Tg <E(V¢)2 + V(Cb)) T LM \/—8 ‘aM3BCt(¢)

3

* [he gravitational trace-relation becomes

— 1 A
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3nGy 167Gy L e

B. ()T = — 327 G\TT

e Conservation of the boundary stress energy tensor implies

=0

ViTiJ- — O ﬁ <a¢¢ — Bé:t(¢)>

i ¢ 0M3

—o Dirichlet

o |dentify the operator © dual to the bulk matter field through its radial momentum

0 . = 05
P 5(0,)




o |dentify the operator © dual to the bulk matter field through its radial momentum

e The flow can then be defined as
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o |dentify the operator © dual to the bulk matter field through its radial momentum

e The flow can then be defined as

J=4¢ ‘bry
© 2J \/ =8 low, Ti = J\/ el — (162G TT + Lol 4 02802 _ o w-28)ig 151 — Boy(T) — V)
dA oM, oM oM; B.(J) N drnGy b Ct

 Turning off sources, J = 0

— (7, LT
ﬁ p— J —g <TT | /12 | @ >
 Quadratic operator, not well-defined because of UV divergences at coincident points

* Our proposal: combine trajectories to avoid these ambiguities



Proposal for finiteness

o Deforming with pure TT gives a finite theory: spectrum discrete and truncated

[Smirnov, Zamolodchikov, ‘16]

|
g, = | — \/ 1 — 4n?ye, (0) [McGough, Mezei, Verlinde, “16]
2%y
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o Deforming with pure TT gives a finite theory: spectrum discrete and truncated

1 Ve [Smirnov, Zamolodchikov, ‘16]
_ _ _ 2 T Zei | ‘
g, = N (1 \/ 1 —4xn yen(0)> S [McGough, Mezei, Verlinde, 16]
« Makes the theory non-local at scales ~ y. \‘>
”~ )/ ’
 Proposal: )
_ DI.
First perform a small 1'/° deformation, then continue the trajectory with -3 . ¢ (+A)
_ ~ /
1T + @2 (+A2) {Jr\/\? e soH /'Y:YL
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o Deforming with pure TT gives a finite theory: spectrum discrete and truncated

1 .Z"_, [Smirnov, Zamolodchikov, ‘16]
£, = > (1 — \/ | — 47z2yen(0)> . [McGough, Mezei, Verlinde, *16]
) N
\
« Makes the theory non-local at scales ~ y. 'y
'
)/

 Proposal:

First perform a small 7T deformation, then continue the trajectory with - TT +6F (+A)

TT + (2 (+ Az) {:erva SUM /;: .
. (0% is now well defined (n100|m) = Z (n|O|p){p|O|m) ¥=o

P
« Should give a QG theory in (A)dS; which is well-defined and describes approx. local
matter. Non-local effects at very high energies where QG effects become important.

» For dS, still need to address continuity of the A < ¢/6 energy levels
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Uplift sector and continuity

« Continuity is achieved for A = ¢/6 because at the matching point the 4/  vanishes
 (Geometrically, because the extrinsic curvature vanishes at the horizon

. For the other BH states A < ¢/6,r, < € = Fioin » CONtINUIty requires an interpolating

scalar to smooth out the transition between the remaining AdS-BTZ patch and the
newly-created dS patch:
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e Consider the ansatz [Bizon, Rostworowski, ‘11]
ds32 = — p?A(t, p)e 2P dt> + AT, p)dp? + 2g(t, p)db? ¢ = P(p, 1)

 Appropriate choices of A, 0, g interpolate between a BTZ-horizon at p = 0 and dS
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ds32 = — p?A(t, p)e 2P dt> + AT, p)dp? + 2g(t, p)db? ¢ = P(p, 1)

 Appropriate choices of A, 0, g interpolate between a BTZ-horizon at p = 0 and dS

* The Brown-York energy density is 72 0 g
e = | — /AL
16720%Gy, 2g

« An interpolating solution with 6pg = 0 in the middle describes the continuous joining
* Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS



Consider the ansatz [Bizon, Rostworowski, ‘11]
ds32 = — p?A(t, p)e 2P dt> + AT, p)dp? + 2g(t, p)db? ¢ = P(p, 1)

Appropriate choices of A, 0, g interpolate between a BTZ-horizon at p = 0 and dS

* The Brown-York energy density is 72 0 g
e = | — /AL
16720%Gy, 2g

An interpolating solution with 6pg = 0 in the middle describes the continuous joining
* Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS

The EOMs are organized in two constraint equations, plus dynamical equations
* First check: at the linearized level a consistent solution of the constraint equations exists
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Consider the ansatz [Bizon, Rostworowski, ‘11]
ds32 = — p?A(t, p)e 2P dt> + AT, p)dp? + 2g(t, p)db? ¢ = P(p, 1)

Appropriate choices of A, 0, g interpolate between a BTZ-horizon at p = 0 and dS

* The Brown-York energy density is 72 0 g
e = | — /AL
16720%Gy, 2g

An interpolating solution with 6pg = 0 in the middle describes the continuous joining
* Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS

The EOMs are organized in two constraint equations, plus dynamical equations
* First check: at the linearized level a consistent solution of the constraint equations exists

_—/\
: ¢ * The Dirichlet problem in gravity is not

—g always well-posed
[e.g. An, Anderson ‘21 ]
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* |In progress: full solution of the non-
linear problem




* Putting together the initial small TT part of the trajectory and the inclusion of matter through the
well-defined 0% terms, including the uplift sector

AW ]
d_/lz_zj[.[M;/_yTT y<y.
AW 1 ] ..

A P (TT+ 02 — lfd]d-])

Z ”L@ "B, + ) e Y > Ve

1 y
— 21 \/ A2 = 99T 0. — A~ 'B (D () Iy 2 _ W(d () ny
JMQ "B b W 1100, = AT B ® D) + ) = V@A) + )

* Using the Hamiltonian path integral, we integrate only in regions of phase space with real energies

» The trajectory in theory space is piece-wise defined. At each value of the deformation A we can use
either the Lagrangian or the Hamiltonian formalism to compute the operators needed for 4 + AA
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Dressing energies and bulk comparison

* Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction



Dressing energies and bulk comparison

» Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction

* E.g. for the pole patch consider the metric ansatz

, 2 )\ 2 A=1,60=0:
_ _ P
dS32 = 5 —p*A(t, p)e P d* + At p)dp* + T (1 — Z) d6” p = 0: horizon
(1+%)
£2

p = C: pole



* Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction

* E.g. for the pole patch consider the metric ansatz

2

2 o o) 2 A — 1, 5 — O .
4 2 _28(1.p) 742 1 L P y
4532 — : —p A(t,ple 2P+ A7 (¢t, p)dp” + 7 l—— ) d6 0 = 0: horizon

(1+5)
72 pP = % pole
« At first non-trivial order in G, the scalar sees the background geometry and backreacts on the metric:
_ 2 3 )
A =1+ GyAA + O(Gy) 5 =0+ G4,

* Put a Dirichlet boundary cutting off the horizon. Explicit time-dependent solutions with correct BCs:

b =0
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Dressing energies and bulk comparison

* Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction

* E.g. for the pole patch consider the metric ansatz
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2 o o) 2 A — 1, 5 — O .
4 2 _28(1.p) 742 1 L P y
ds32 — : —p A(t,ple 2P+ A7 (¢t, p)dp” + 7 l—— ) d6 0 = 0: horizon

(1+5)
72 pP = % pole
« At first non-trivial order in G, the scalar sees the background geometry and backreacts on the metric:
_ 2 3 )
A =1+ GyAA + O(Gy) 5 =0+ G4,

* Put a Dirichlet boundary cutting off the horizon. Explicit time-dependent solutions with correct BCs:
ﬁ) £=-0o '6: O €==L
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« QFT side: To a given mode in the bulk we can associate an effective field X; ot mass w; on the bry

b= a,f(p)e +al fi(p)e L= | a0 (3 = w22) + .
n
= Z anf;;(p)eiw”t T a;:f:(p)e_iwnt (1) =a o0t 4 ale "t
n

. On an oscillating coherent state |y) of the field X; We can compute energy and pressure
At first order:

1, 1
AT o (;(2 a)f;(z) xw? AT - (;5.2 - o ;(2> x 1 = 2sinX(w)
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« QFT side: To a given mode in the bulk we can associate an effective field X; ot mass w; on the bry

b= a,f(p)e +al fi(p)e L= | a0 (3 = w22) + .
n
7= Y a,fip)e ! + alf(p)e 10 = e +ale ()
n

. On an oscillating coherent state |y) of the field X; We can compute energy and pressure

At first order:

| 1
(){2 a)f;(z) < ®? AT x — (;5.2 - o ;(2> x 1 = 2sinX(w)
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—p £ 9¢
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AT x —
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* At first order the trace relation gives

AT! + ATY(0) = m2 (TIOATY(0) + TYOAT, ) - 20()*

« By energy conservation the time-dependent terms cancel. This fixes O] )(j] and leaves

 1-mT©
AT, «x — W; 70,
1 — AT,




« The TT + A\, deformation of a CFT, describes 3-dimensional gravitational physics in patches
of cosmological space-times

* The original prescription correctly accounts for the entropy of the cosmic horizon, but only
captures the “pure gravity” sector.

* |t is continuous only for the entropically dominant energy levels

* We are proposing how incorporate approx. local bulk matter at finite ¢

- o | T 0 ()
* This involves piecewise-trajectories in theory space, where first ./~
the theory is rendered finite and then matter is added ./ 7=Ye

vid) - V\/
* Thanks to matter, we can incorporate an “uplift” field that makes also the
$: subdominant levels continuous
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