The matter with $T \bar{T}+\Lambda_{2}$

G. Bruno De Luca - Stanford University

Work in preparation with Aguilera Damia, Batra, Freedman, Silverstein, Torroba, Yang + discussions with Banihashemi, Shaghoulian, Shyam, Soni...

CERN workshop: Cosmology, Quantum Gravity and Holography
Sep 7, 2023

Cosmological space-times and UV completions

- Top-Down: describe dS and dS-like space-times in String/M-theory by compactifying extra dimensions

Cosmological space-times and UV completions

- Top-Down: describe dS and dS-like space-times in String/M-theory by compactifying extra dimensions
- On Calabi-Yau: thanks to supersymmetry the problem becomes algebraic, need to stabilize many massless modes (moduli) with perturbative/non perturbative effects (KKLT, LVS, ...)
[Kachru, Kallosh, Linde, Trivedi ‘03,
....; Demirtas, Kim, McAllister, Moritz, Rios-Tascon, ‘22]

Cosmological space-times and UV completions

- Top-Down: describe dS and dS-like space-times in String/M-theory by compactifying extra dimensions
- On Calabi-Yau: thanks to supersymmetry the problem becomes algebraic, need to stabilize many massless modes (moduli) with perturbative/non perturbative effects (KKLT, LVS, ...)
[Kachru, Kallosh, Linde, Trivedi ‘03,,
....;; Demirtas, Kim, McAllister, Moritz, Rios-Tascon, ‘22]
- On negatively-curved spaces, use quantum effects (Casimir energies) for power-law stabilization. No moduli thanks to rigidity of hyperbolic spaces
[GBDL, Silverstein, Torroba, '21]

Cosmological space-times and UV completions

- Top-Down: describe dS and dS-like space-times in String/M-theory by compactifying extra dimensions
- On Calabi-Yau: thanks to supersymmetry the problem becomes algebraic, need to stabilize many massless modes (moduli) with perturbative/non perturbative effects (KKLT, LVS, ...)
[Kachru, Kallosh, Linde, Trivedi ‘03,,
....; Demirtas, Kim, McAllister, Moritz, Rios-Tascon, '22]
- On negatively-curved spaces, use quantum effects (Casimir energies) for power-law stabilization. No moduli thanks to rigidity of hyperbolic spaces
[GBDL, Silverstein, Torroba, '21]
- In progress: i) use ML methods to compute further details of the geometry/physics, ii) explicit entropy counts and axion physics in these models
[GBDL, Silverstein, Torroba, in progress]

Cosmological space-times and UV completions

- Top-Down: describe dS and dS-like space-times in String/M-theory by compactifying extra dimensions
- On Calabi-Yau: thanks to supersymmetry the problem becomes algebraic, need to stabilize many massless modes (moduli) with perturbative/non perturbative effects (KKLT, LVS, ...)
[Kachru, Kallosh, Linde, Trivedi ‘03,,
....; Demirtas, Kim, McAllister, Moritz, Rios-Tascon, ‘22]
- On negatively-curved spaces, use quantum effects (Casimir energies) for power-law stabilization. No moduli thanks to rigidity of hyperbolic spaces
[GBDL, Silverstein, Torroba, '21]
- In progress: i) use ML methods to compute further details of the geometry/physics, ii) explicit entropy counts and axion physics in these models
[GBDL, Silverstein, Torroba, in progress]

[Silverstein, Torroba, Dodelson, Dong '13; Còrdova, GBDL, Tomasiello, ‘18 ‘19,]
- Many other scenarios with interplay of classical and stringy effects

Cosmological space-times and UV completions

- Top-Down: describe dS and dS-like space-times in String/M-theory by compactifying extra dimensions
- On Calabi-Yau: thanks to supersymmetry the problem becomes algebraic, need to stabilize many massless modes (moduli) with perturbative/non perturbative effects (KKLT, LVS, ...)
[Kachru, Kallosh, Linde, Trivedi ‘03,,
.....; Demirtas, Kim, McAllister, Moritz, Rios-Tascon, ‘22]
- On negatively-curved spaces, use quantum effects (Casimir energies) for power-law stabilization. No moduli thanks to rigidity of hyperbolic spaces
[GBDL, Silverstein, Torroba, '21]
- In progress: i) use ML methods to compute further details of the geometry/physics, ii) explicit entropy counts and axion physics in these models
[GBDL, Silverstein, Torroba, in progress]

[Silverstein, Torroba, Dodelson, Dong '13; Còrdova, GBDL, Tomasiello, '18'19,]
- Many other scenarios with interplay of classical and stringy effects
- Lesson: 4d physics depends on the geometry of extra dimensions

- Bottom-up holography:

- Various approaches to use holography to describe to describe accelerated expansions via lower-dimensional QFTs
- dS/CFT, dS/dS, FRW/FRW, FRW/CFT, matrix models, ... [Strominger, ‘01; Anninos, Hartman, Strominger '17,

Alishahiha, Karch, Silverstein, Tong, ‘05,
Freivogel, Sekino, Susskind, Yeh, ‘06, Banks, Fischler, '18, Anninos Hartnoll, Hofman, '12 ...]

- Bottom-up holography:
- Various approaches to use holography to describe to describe accelerated expansions via lower-dimensional QFTs
- dS/CFT, dS/dS, FRW/FRW, FRW/CFT, matrix models, ... [Strominger, '01; Anninos, Hartman, Strominger ' 17 ,

Alishahiha, Karch, Silverstein, Tong, '05,
Freivogel, Sekino, Susskind, Yeh, '06,
Banks, Fischler, '18, Anninos Hartnoll, Hofman, '12
...]

- Recently, the $T \bar{T}+\Lambda_{2}$ deformation of holographic CFTs suggests how to construct holographic descriptions of observer patches of dS_{3}, including entropy counts and finiteness of spectrum.

```
[Zamolodchikov, '04; Smirnov, Zamolodchikov, '16
Cavaglia, Negro, Szecsenyi, Tateo, '16,
McGough, Mezei, Verlinde, '16; Kraus, Liu, Marolf, '18;
Gorbenko, Silverstein, Torroba, '18; Lewkowycz, Liu, Sllverstein, Torroba, '19;
Shyam, '21; Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, '21,
...]
```


- Bottom-up holography:

- Various approaches to use holography to describe to describe accelerated expansions via lower-dimensional QFTs
- dS/CFT, dS/dS, FRW/FRW, FRW/CFT, matrix models, ... [Strominger, '01; Anninos, Hartman, Strominger ' 17 ,

Alishahiha, Karch, Silverstein, Tong, ‘05,
Freivogel, Sekino, Susskind, Yeh, '06,
Banks, Fischler, '18, Anninos Hartnoll, Hofman, '12 ...]

- Recently, the $T \bar{T}+\Lambda_{2}$ deformation of holographic CFTs suggests how to construct holographic descriptions of observer patches of dS_{3}, including entropy counts and finiteness of spectrum.

```
[Zamolodchikov, `04; Smirnov, Zamolodchikov, `16
Cavaglia, Negro, Szecsenyi, Tateo, '16,
McGough, Mezei, Verlinde, '16; Kraus, Liu, Marolf, '18;
Gorbenko, Silverstein, Torroba, '18; Lewkowycz, Liu, Sllverstein, Torroba, '19;
Shyam, '21; Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, '21,
...]
```

- Top-down and bottom-up are related by explicit uplifts of AdS/CFT, thermal mixing among internal spaces
- Today's talk: review of this framework and extension to include local bulk matter.
- [Time permitting, comment on extension of hyperbolic dS with ML]

$T \bar{T}$ deformation and bounded regions of space-times

- Gravity in AdS_{3} described holographically in terms of a 2d CFT
- Extended to bounded regions of AdS by a deformation of the CFT

$T \bar{T}$ deformation and bounded regions of space-times

- Gravity in AdS_{3} described holographically in terms of a 2d CFT
- Extended to bounded regions of AdS by a deformation of the CFT
- On the CFT, define $T \bar{T}(x, y) \equiv \frac{1}{8}\left(T^{i j}(x) T_{i j}(y)-T_{i}^{i}(x) T_{j}^{j}(y)\right) \quad \begin{aligned} & \left.\text { [Zamolodchikov, '04; } \begin{array}{l}\text { Smirrov, Zamolodchikov, '16 } \\ \text { Cavaglia, Negro, Szecsenyi, Tateo, '16] }\end{array}\right]\end{aligned}$
- In 2d, the limit $y \rightarrow x$ is well-defined. Deform the theory as

$$
\frac{d S}{d \lambda}=2 \pi \int d^{2} x \sqrt{-g} T \bar{T}(x)
$$

$T \bar{T}$ deformation and bounded regions of space-times

- Gravity in AdS_{3} described holographically in terms of a 2d CFT
- Extended to bounded regions of AdS by a deformation of the CFT
- On the CFT, define

$$
T \bar{T}(x, y) \equiv \frac{1}{8}\left(T^{i j}(x) T_{i j}(y)-T_{i}^{i}(x) T_{j}^{j}(y)\right)
$$

- In 2d, the limit $y \rightarrow x$ is well-defined. Deform the theory as
- Some properties of the deformed QFT:

$$
\frac{d S}{d \lambda}=2 \pi \int d^{2} x \sqrt{-g} T \bar{T}(x)
$$

1) Trace relation: $\quad T_{i}^{i}=-4 \pi \lambda T \bar{T}-\frac{c}{24 \pi} R^{(2)}$

$T \bar{T}$ deformation and bounded regions of space-times

- Gravity in AdS_{3} described holographically in terms of a 2d CFT
- Extended to bounded regions of AdS by a deformation of the CFT
- On the CFT, define $\quad T \bar{T}(x, y) \equiv \frac{1}{8}\left(T^{i j}(x) T_{i j}(y)-T_{i}^{i}(x) T_{j}^{j}(y)\right)$
[Zamolodchikov, ‘04;
- In 2d, the limit $y \rightarrow x$ is well-defined. Deform the theory as
- Some properties of the deformed QFT:

$$
\frac{d S}{d \lambda}=2 \pi \int d^{2} x \sqrt{-g} T \bar{T}(x)
$$

1) Trace relation: $\quad T_{i}^{i}=-4 \pi \lambda T \bar{T}-\frac{c}{24 \pi} R^{(2)}$
2) Integrability of the deformation: known deformation of the energy spectrum

- For a CFT on a cylinder with size L (and zero momentum)

$$
y \equiv \frac{\lambda}{L^{2}} \quad \pi y \varepsilon_{n} \partial_{y} \varepsilon_{n}-\partial_{y} \varepsilon_{n}+\frac{\pi}{2} \varepsilon_{n}^{2}=0
$$

$$
S=\frac{1}{16 \pi G_{N}} \int_{M_{3}} d^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)-\left.\frac{1}{8 \pi G_{N}} \int_{\partial M_{3}} d^{2} x \sqrt{-g}\left(K-\frac{1}{\ell}\right) \quad \begin{aligned}
& \text { Boundary action for D. problem, } \\
& \text { minimal counterterm }
\end{aligned} d s_{M_{3}}^{2}\right|_{\partial M_{3}}=d s_{M_{2}}^{2}
$$

$$
S=\frac{1}{16 \pi G_{N}} \int_{M_{3}} d^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)-\frac{1}{8 \pi G_{N}} \int_{\partial M_{3}} d^{2} x \sqrt{-g}\left(K-\frac{1}{\ell}\right)
$$

Boundary action for D. problem, minimal counterterm

$$
\left.d s_{M_{3}}^{2}\right|_{\partial M_{3}}=d s_{M_{2}}^{2}
$$

- Define the Brown-York stress quasi-local stress-energy tensor

$$
T_{\mu \nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S_{\mathrm{on} \mathrm{sh}}}{\delta g^{\mu \nu}}=\frac{1}{8 \pi G_{N}}\left(K_{\mu \nu}-g_{\mu \nu} K+\frac{1}{\ell} g_{\mu \nu}\right)
$$

 [cf. Guica, Monten, '19]

$$
S=\frac{1}{16 \pi G_{N}} \int_{M_{3}} d^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)-\left.\frac{1}{8 \pi G_{N}} \int_{\partial M_{3}} d^{2} x \sqrt{-g}\left(K-\frac{1}{\ell}\right) \quad \begin{aligned}
& \text { Boundary action for D. problem, } \\
& \text { minimal counterterm }
\end{aligned} \quad d s_{M_{3}}^{2}\right|_{\partial M_{3}}=d s_{M_{2}}^{2}
$$

- Define the Brown-York stress quasi-local stress-energy tensor

$$
T_{\mu \nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S_{\mathrm{on} \mathrm{sh}} .}{\delta g^{\mu \nu}}=\frac{1}{8 \pi G_{N}}\left(K_{\mu \nu}-g_{\mu \nu} K+\frac{1}{\ell} g_{\mu \nu}\right)
$$

1) Using the transverse Einstein equation ("radial") gives the trace formula

$$
T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\ell}{16 \pi G_{N}} R^{(2)}
$$

- Agrees with the QFT trace formula using the dictionary $\quad \lambda=8 \ell G_{N}, \quad c=\frac{3}{2} \frac{\ell}{G_{N}}$

$$
S=\frac{1}{16 \pi G_{N}} \int_{M_{3}} d^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)-\frac{1}{8 \pi G_{N}} \int_{\partial M_{3}} d^{2} x \sqrt{-g}\left(K-\frac{1}{\ell}\right)
$$

Boundary action for D. problem, minimal counterterm

$$
\left.d s_{M_{3}}^{2}\right|_{\partial M_{3}}=d s_{M_{2}}^{2}
$$

- Define the Brown-York stress quasi-local stress-energy tensor

$$
T_{\mu \nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S_{\mathrm{On} \mathrm{sh}} .}{\delta g^{\mu \nu}}=\frac{1}{8 \pi G_{N}}\left(K_{\mu \nu}-g_{\mu \nu} K+\frac{1}{\ell} g_{\mu \nu}\right)
$$

1) Using the transverse Einstein equation ("radial") gives the trace formula

$$
T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\ell}{16 \pi G_{N}} R^{(2)}
$$

- Agrees with the QFT trace formula using the dictionary $\quad \lambda=8 \ell G_{N}, \quad c=\frac{3}{2} \frac{\ell}{G_{N}}$
- If M_{2} is a cylinder with radius-size L , and define the dimensionless energy

$$
y \equiv \frac{\lambda}{L^{2}} \quad \varepsilon \equiv-L \int d \theta \sqrt{g_{\theta \theta}} u^{i} u^{j} T_{i j}
$$

2) Same equation for the energy levels as function of y (L changes).
[Gorbenko, Silverstein, Torroba, '18; Lewkowycz, Liu, Silverstein, Torroba, '19; Shyam, '21; Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, '21]

- Integrable deformation of the QFT can be extended to describe bounded regions of $d S_{3}$
- Integrable deformation of the QFT can be extended to describe bounded regions of $d S_{3}$
- QFT side:

- Integrable deformation of the QFT can be extended to describe bounded regions of $d S_{3}$
- QFT side:
$\frac{d S}{d \lambda}=2 \pi \int d^{2} x \sqrt{-g} T \bar{T}(x)+\frac{\eta-1}{2 \pi \lambda^{2}} \int d^{2} x \sqrt{-g}$
- Gravity side:
$S=\frac{1}{16 \pi G_{N}} \int_{M_{3}} d^{3} x \sqrt{-g}\left(R+\frac{2 \eta}{\ell^{2}}\right)+\frac{1}{8 \pi G_{N}} \int_{\partial M_{3}} d^{2} x \sqrt{-g}\left(K-\frac{1}{\ell}\right)$
- Integrable deformation of the QFT can be extended to describe bounded regions of $d S_{3}$
- QFT side:
$\frac{d S}{d \lambda}=2 \pi \int d^{2} x \sqrt{-g} T \bar{T}(x)+\frac{\eta-1}{2 \pi \lambda^{2}} \int d^{2} x \sqrt{-g}$ $T_{i}^{i}=-4 \pi \lambda T \bar{T}-\frac{\eta-1}{\pi \lambda}-\frac{c}{24 \pi} R^{(2)}$
- Gravity side:

$$
\begin{gathered}
S=\frac{1}{16 \pi G_{N}} \int_{M_{3}} d^{3} x \sqrt{-g}\left(R+\frac{2 \eta}{\ell^{2}}\right)+\frac{1}{8 \pi G_{N}} \int_{\partial M_{3}} d^{2} x \sqrt{-g}\left(K-\frac{1}{\ell}\right) \\
T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\eta-1}{8 \pi G_{N}}-\frac{\ell}{16 \pi G_{N}} R^{(2)}
\end{gathered}
$$

- Same dictionary as before $\lambda=8 \ell G_{N}$,

$$
c=\frac{3}{2} \frac{\ell}{G_{N}}, \quad y \equiv \frac{\lambda}{L^{2}}
$$

- Integrable deformation of the QFT can be extended to describe bounded regions of $d S_{3}$
- QFT side:
$\frac{d S}{d \lambda}=2 \pi \int d^{2} x \sqrt{-g} T \bar{T}(x)+\frac{\eta-1}{2 \pi \lambda^{2}} \int d^{2} x \sqrt{-g}$ $T_{i}^{i}=-4 \pi \lambda T \bar{T}-\frac{\eta-1}{\pi \lambda}-\frac{c}{24 \pi} R^{(2)}$
- Gravity side:

$$
\begin{aligned}
S= & \frac{1}{16 \pi G_{N}} \int_{M_{3}} d^{3} x \sqrt{-g}\left(R+\frac{2 \eta}{\ell^{2}}\right)+\frac{1}{8 \pi G_{N}} \int_{\partial M_{3}} d^{2} x \sqrt{-g}\left(K-\frac{1}{\ell}\right) \\
& T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\eta-1}{8 \pi G_{N}}-\frac{\ell}{16 \pi G_{N}} R^{(2)}
\end{aligned}
$$

- Same dictionary as before $\lambda=8 \ell G_{N}$,

$$
c=\frac{3}{2} \frac{\ell}{G_{N}}, \quad y \equiv \frac{\lambda}{L^{2}}
$$

- Differential equations for the energy levels (no momentum)

$$
\pi y \varepsilon_{n} \partial_{y} \varepsilon_{n}-\partial_{y} \varepsilon_{n}+\frac{\pi}{2} \varepsilon_{n}^{2}=\frac{1-\eta}{2 \pi y^{2}}
$$

- The general local solution is $\quad \varepsilon(y)=\frac{1}{\pi y}\left(1 \pm \sqrt{\eta-4 C_{1} y}\right) \quad y \equiv \frac{\lambda}{L^{2}}$
- The general local solution is $\quad \varepsilon(y)=\frac{1}{\pi y}\left(1 \pm \sqrt{\eta-4 C_{1} y}\right) \quad y \equiv \frac{\lambda}{L^{2}}$
- For dS $(\eta=-1)$, the trajectory cannot start at $y=0$. Piece-wise trajectories starting from AdS:

Cosmic horizon patch
(Dressed $\Delta \simeq \frac{c}{6}$ black hole microstates)

Pole patch
(Dressed $\Delta=0$ vacuum)

$$
\mathcal{E}=\frac{1}{\pi y}(1+\sqrt{\eta+\ldots}) \quad \longleftarrow \text { related by } \pm \sqrt{ } \longrightarrow \quad \mathcal{E}=\frac{1}{\pi y}(1-\sqrt{\eta+\ldots})
$$

- How to build the Cosmic Horizon patch

$$
\begin{gathered}
d s_{B T Z}^{2}=-\frac{r^{2}-r_{h}^{2}}{\ell^{2}} d t^{2}+\frac{\ell^{2}}{r^{2}-r_{h}^{2}} d r^{2}+r^{2} d \theta^{2} \\
\varepsilon_{B T Z}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-\frac{r_{h}^{2}}{r^{2}}}\right)
\end{gathered}
$$

- How to build the Cosmic Horizon patch

$$
\begin{array}{ll}
v \text { to build the Cosmic Horizon patch } & \text { [Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, '21] } \\
d s_{B T Z}^{2}=-\frac{r^{2}-r_{h}^{2}}{\ell^{2}} d t^{2}+\frac{\ell^{2}}{r^{2}-r_{h}^{2}} d r^{2}+r^{2} d \theta^{2} & d s_{d S}^{2}=-\left(1-\frac{r^{2}}{\ell^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{\ell^{2}}\right)^{-1} d r^{2}+r^{2} d \theta^{2} \\
\varepsilon_{B T Z}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-\frac{r_{h}^{2}}{r^{2}}}\right) & \varepsilon_{d S}=\frac{1}{2 \pi^{2} y}\left(1+\sqrt{1-\frac{\ell^{2}}{r^{2}}}\right)
\end{array}
$$

- The horizon of a BTZ black hole with $r_{h}=\ell$ looks the same as the dS cosmic horizon
- How to build the Cosmic Horizon patch

$$
\begin{gathered}
d s_{B T Z}^{2}=-\frac{r^{2}-r_{h}^{2}}{\ell^{2}} d t^{2}+\frac{\ell^{2}}{r^{2}-r_{h}^{2}} d r^{2}+r^{2} d \theta^{2} \quad d s_{d S}^{2}=-\left(1-\frac{r^{2}}{\ell^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{\ell^{2}}\right)^{-1} d r^{2}+r^{2} d \theta^{2} \\
\left.\varepsilon_{B T Z}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-\frac{r_{h}^{2}}{r^{2}}}\right) \quad r=r_{h} \stackrel{\sqrt{2}}{\longleftrightarrow}\right) r=\ell \quad \varepsilon_{d S}=\frac{1}{2 \pi^{2} y}\left(1+\sqrt{1-\frac{\ell^{2}}{r^{2}}}\right)
\end{gathered}
$$

- The horizon of a BTZ black hole with $r_{h}=\ell$ looks the same as the dS cosmic horizon
[Dong, Silverstein, Torroba, '18] $\longrightarrow \Delta \Delta=</ 6$
- Join the deformation with $\eta=1$ to the one at $\eta=-1$ at this locus. Then continue with $\eta=-1$

- How to build the Cosmic Horizon patch

$$
\begin{gathered}
d s_{B T Z}^{2}=-\frac{r^{2}-r_{h}^{2}}{\ell^{2}} d t^{2}+\frac{\ell^{2}}{r^{2}-r_{h}^{2}} d r^{2}+r^{2} d \theta^{2} \quad d s_{d S}^{2}=-\left(1-\frac{r^{2}}{\ell^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{\ell^{2}}\right)^{-1} d r^{2}+r^{2} d \theta^{2} \\
\varepsilon_{B T Z}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-\frac{r_{h}^{2}}{r^{2}}}\right) \quad r=r_{h} \longleftrightarrow=0 \\
\longmapsto=\ell \quad \varepsilon_{d S}=\frac{1}{2 \pi^{2} y}\left(1+\sqrt{1-\frac{\ell^{2}}{r^{2}}}\right)
\end{gathered}
$$

- The horizon of a BTZ black hole with $r_{h}=\ell$ looks the same as the dS cosmic horizon
[Dong, Silverstein, Torroba, '18] $\xrightarrow{\longrightarrow} \Delta=c_{6}$
- Join the deformation with $\eta=1$ to the one at $\eta=-1$ at this locus. Then continue with $\eta=-1$
- States with $\Delta>\frac{c}{6}+\mathcal{O}(1)$ have formally complex energies, and are discarded from the theory
- The theory has a finite number of states: discrete and bounded spectrum
- States with $\Delta<\frac{c}{6}$ are real but discontinuous

Recap so far

- $T \bar{T}+\Lambda_{2}$: way to deform holographic CFT to capture the physics of pure gravity on bounded regions of dS_{3}
[Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, '21 Shyam, '21]
- It reproduces the Gibbons-Hawking entropy of dS, including logarithmic corrections
[Gibbons, Hawking '77, Anninos, Denef, Law, Sun, '20]
- Produces a finite theory (type I operator algebra)
[cf. Chandrasekaran, Longo, Pennington, Witten '22]
- Current limitations, only pure gravity; discontinuity the $\Delta \ll c / 6$ levels
- Next: how to include bulk matter and address these issues

Adding matter at large c

- Start from the gravity side. E.g. with a scalar field:

$$
S=S_{\mathrm{grav}}-\int \sqrt{-g}\left(\frac{1}{2}(\nabla \phi)^{2}+V(\phi)\right)+\int_{\partial M_{3}} \sqrt{-\left.g\right|_{\partial M_{3}}} B_{\mathrm{Ct}}(\phi)
$$

Adding matter at large c

- Start from the gravity side. E.g. with a scalar field:

$$
S=S_{\text {grav }}-\int \sqrt{-g}\left(\frac{1}{2}(\nabla \phi)^{2}+V(\phi)\right)+\int_{\partial M_{3}} \sqrt{-\left.g\right|_{\partial M_{3}}} B_{\mathrm{Ct}}(\phi)
$$

- The gravitational trace-relation becomes

$$
B_{c t}(\phi) T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\eta-1}{8 \pi G_{N}}-\frac{\ell}{16 \pi G_{N}} R^{(2)} \breve{T}_{\mu \nu}^{-2 \ell \mathscr{T}^{\phi} \eta^{\mu} \eta^{\nu}} \longleftrightarrow \ell\left(V(\phi)+\frac{1}{2}\left(\left(\nabla_{\|} \phi\right)^{2}-\left(\nabla_{\perp} \phi\right)^{2}\right)\right)
$$

Adding matter at large c

- Start from the gravity side. E.g. with a scalar field:

$$
S=S_{\mathrm{grav}}-\int \sqrt{-g}\left(\frac{1}{2}(\nabla \phi)^{2}+V(\phi)\right)+\int_{\partial M_{3}} \sqrt{-\left.g\right|_{\partial M_{3}}} B_{\mathrm{Ct}}(\phi)
$$

- The gravitational trace-relation becomes

$$
B_{c t}(\phi) T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\eta-1}{8 \pi G_{N}}-\frac{\ell}{16 \pi G_{N}} R^{(2)} \underbrace{-2 \ell \mathscr{T}_{\mu}^{\phi} \eta^{\mu} \eta^{\nu}} \ell\left(V(\phi)+\frac{1}{2}\left(\left(\nabla_{\|} \phi\right)^{2}-\left(\nabla_{\perp} \phi\right)^{2}\right)\right)
$$

- Conservation of the boundary stress energy tensor implies

$$
\nabla^{i} T_{i j}=\left.0 \quad \Longrightarrow \quad\left(\partial_{\perp} \phi-B_{\mathrm{ct}}^{\prime}(\phi)\right) \partial_{\|} \phi\right|_{\partial M_{3}}=0
$$

Adding matter at large c

- Start from the gravity side. E.g. with a scalar field:

$$
S=S_{\mathrm{grav}}-\int \sqrt{-g}\left(\frac{1}{2}(\nabla \phi)^{2}+V(\phi)\right)+\int_{\partial M_{3}} \sqrt{-\left.g\right|_{\partial M_{3}}} B_{\mathrm{Ct}}(\phi)
$$

- The gravitational trace-relation becomes

$$
\begin{aligned}
& \begin{array}{l}
B_{c t}(\phi) T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\eta-1}{8 \pi G_{N}}-\frac{\ell}{16 \pi G_{N}} R^{(2)} \underbrace{-2 \ell \mathscr{T}_{\mu \nu}^{\phi} \eta^{\mu} \eta^{\nu}} \\
\text { Conservation of the boundary stress energy tensor implies } \\
\longrightarrow
\end{array}\left(V(\phi)+\frac{1}{2}\left(\left(\nabla_{\mu} \phi\right)^{2}-\left(\nabla_{\perp} \phi\right)^{2}\right)\right) \\
& \nabla^{i} T_{i j}=0 \quad \Longrightarrow \quad\left(\partial_{\perp} \phi-B_{\mathrm{ct}}^{\prime}(\phi)\right){\left.\underset{L}{\|} \phi_{ \pm}\right|_{\partial M_{3}}=0}^{\partial^{2}}=0
\end{aligned}
$$

Adding matter at large c

- Start from the gravity side. E.g. with a scalar field:

$$
S=S_{\mathrm{grav}}-\int \sqrt{-g}\left(\frac{1}{2}(\nabla \phi)^{2}+V(\phi)\right)+\int_{\partial M_{3}} \sqrt{-\left.g\right|_{\partial M_{3}}} B_{\mathrm{Ct}}(\phi)
$$

- The gravitational trace-relation becomes

$$
\begin{aligned}
& B_{c t}(\phi) T_{i}^{i}=-32 \pi \ell G_{N} T \bar{T}-\frac{\eta-1}{8 \pi G_{N}}-\frac{\ell}{16 \pi G_{N}} R^{(2)}-2 \ell \mathscr{T}_{\mu \nu}^{\phi} \eta^{\mu} \eta^{\nu} \\
& \ell\left(V(\phi)+\frac{1}{2}\left(\left(\nabla_{\mu} \phi\right)^{2}-\left(\nabla_{\perp} \phi\right)^{2}\right)\right) \\
& \nabla^{i} T_{i j}=0 \quad \Longrightarrow \quad\left(\partial_{1} \phi-B_{\mathrm{ct}}^{\prime}(\phi)\right){\left.\underset{\sim}{d}{ }_{\|}^{\partial_{i j} \phi}\right|_{\partial M_{3}}=0}^{=0}
\end{aligned}
$$

- Identify the operator \mathcal{O} dual to the bulk matter field through its radial momentum

$$
\mathcal{O} \propto \quad \Pi_{\phi} \equiv \frac{\delta S}{\delta\left(\partial_{\perp} \phi\right)}
$$

- Identify the operator \mathcal{O} dual to the bulk matter field through its radial momentum

$$
\mathcal{O} \propto \Pi_{\phi} \sim \partial_{\perp} \phi
$$

- The flow can then be defined as

$$
J=\left.\phi\right|_{\text {bry }}
$$

$$
\frac{d S}{d \lambda}=2 \int_{\partial M_{3}} \sqrt{-\left.g\right|_{\partial M_{3}}} T_{i}^{i}=\int \sqrt{-\left.g\right|_{\partial M_{3}}} \frac{1}{B_{c t}(J)}\left(16 \ell G_{N} T \bar{T}+\frac{\eta-1}{4 \pi G_{N}}+e^{w_{c}(3-2 \Delta)} \mathcal{O}^{2}-e^{-w_{c}(3-2 \Delta)_{\gamma}^{i j} \partial_{i} J \partial_{j} J-B_{\mathrm{Ct}}(J)-V(J)}\right)
$$

- Turning off sources, $J=0$

$$
\frac{d S}{d \lambda}=\int \sqrt{-g}\left(T \bar{T}+\frac{1-\eta}{\lambda^{2}}+\mathcal{O}^{2}\right)
$$

- Identify the operator \mathcal{O} dual to the bulk matter field through its radial momentum

$$
\mathcal{O} \propto \Pi_{\phi} \sim \partial_{\perp} \phi
$$

- The flow can then be defined as

$$
J=\left.\phi\right|_{\mathrm{bry}}
$$

$$
\frac{d S}{d \lambda}=2 \int_{\partial M_{3}} \sqrt{-\left.g\right|_{\partial M_{3}}} T_{i}^{i}=\int \sqrt{-\left.g\right|_{\partial M_{3}}} \frac{1}{B_{c t}(J)}\left(16 \ell G_{N} T \bar{T}+\frac{\eta-1}{4 \pi G_{N}}+e^{w_{c}(3-2 \Delta)} \mathcal{O}^{2}-e^{-w_{c}(3-2 \Delta)} \gamma^{i j} \partial_{i} J \partial_{j} J-B_{\mathrm{Ct}}(J)-V(J)\right)
$$

- Turning off sources, $J=0$

$$
\frac{d S}{d \lambda}=\int \sqrt{-g}\left(T \bar{T}+\frac{1-\eta}{\lambda^{2}}+\sigma^{\sigma^{2}}\right)
$$

- Quadratic operator, not well-defined because of UV divergences at coincident points
- Our proposal: combine trajectories to avoid these ambiguities

Proposal for finiteness

- Deforming with pure $T \bar{T}$ gives a finite theory: spectrum discrete and truncated

$$
\varepsilon_{n}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-4 \pi^{2} y \varepsilon_{n}(0)}\right)
$$

[Smirnov, Zamolodchikov, '16] [McGough, Mezei, Verlinde, '16]

Proposal for finiteness

- Deforming with pure $T \bar{T}$ gives a finite theory: spectrum discrete and truncated

$$
\varepsilon_{n}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-4 \pi^{2} y \varepsilon_{n}(0)}\right)
$$

- Makes the theory non-local at scales $\sim y_{c}$

[Smirnov, Zamolodchikov, '16] [McGough, Mezei, Verlinde, '16]

Proposal for finiteness

- Deforming with pure $T \bar{T}$ gives a finite theory: spectrum discrete and truncated

$$
\varepsilon_{n}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-4 \pi^{2} y \varepsilon_{n}(0)}\right)
$$

- Makes the theory non-local at scales $\sim y_{c}$
- Proposal:

[Smirnov, Zamolodchikov, '16] [McGough, Mezei, Verlinde, '16]

First perform a small $T \bar{T}$ deformation, then continue the trajectory with $\therefore T \bar{T}+\theta^{2}\left(+\Lambda_{2}\right)$ $T \bar{T}+\mathcal{O}^{2}\left(+\Lambda_{2}\right)$

- \mathcal{O}^{2} is now well defined $\quad\langle n| \mathcal{O} \mathcal{O}|m\rangle=\sum_{p}\langle n| \mathcal{O}|p\rangle\langle p| \mathcal{O}|m\rangle$

Proposal for finiteness

- Deforming with pure $T \bar{T}$ gives a finite theory: spectrum discrete and truncated

$$
\varepsilon_{n}=\frac{1}{2 \pi^{2} y}\left(1-\sqrt{1-4 \pi^{2} y \varepsilon_{n}(0)}\right)
$$

- Makes the theory non-local at scales $\sim y_{c}$
- Proposal:

[Smirnov, Zamolodchikov, ‘16]

First perform a small $T \bar{T}$ deformation, then continue the trajectory with $\quad . . .^{\circ} T \bar{T}+\sigma^{2}\left(+\Lambda_{2}\right)$ $T \bar{T}+\mathcal{O}^{2}\left(+\Lambda_{2}\right)$

- \mathcal{O}^{2} is now well defined $\quad\langle n| \mathcal{O O}|m\rangle=\sum_{p}\langle n| \mathcal{O}|p\rangle\langle p| \mathcal{O}|m\rangle$

- Should give a QG theory in (A)dS 3 which is well-defined and describes approx. local matter. Non-local effects at very high energies where QG effects become important.
- For dS, still need to address continuity of the $\Delta \ll c / 6$ energy levels

Uplift sector and continuity

- Continuity is achieved for $\Delta=c / 6$ because at the matching point the $\sqrt{ }$ vanishes
- Geometrically, because the extrinsic curvature vanishes at the horizon

Uplift sector and continuity

- Continuity is achieved for $\Delta=c / 6$ because at the matching point the $\sqrt{ }$ vanishes
- Geometrically, because the extrinsic curvature vanishes at the horizon
- For the other BH states $\Delta<c / 6, r_{h}<\ell=r_{j o i n}$, continuity requires an interpolating scalar to smooth out the transition between the remaining AdS-BTZ patch and the newly-created dS patch:

Uplift sector and continuity

- Continuity is achieved for $\Delta=c / 6$ because at the matching point the $\sqrt{ }$ vanishes - Geometrically, because the extrinsic curvature vanishes at the horizon
- For the other BH states $\Delta<c / 6, r_{h}<\ell=r_{\text {join }}$, continuity requires an interpolating scalar to smooth out the transition between the remaining AdS-BTZ patch and the newly-created IS patch:

T $\overline{\text { i }}$

$$
T \bar{T}+\Lambda_{2}
$$

$v(\phi):$

$$
d s_{3}^{2}=-\rho^{2} A(t, \rho) e^{-2 \delta(t, \rho)} d t^{2}+A^{-1}(t, \rho) d \rho^{2}+\ell^{2} g(t, \rho) d \theta^{2} \quad \phi=\phi(\rho, t)
$$

- Appropriate choices of A, δ, g interpolate between a BTZ-horizon at $\rho=0$ and dS

$$
d s_{3}^{2}=-\rho^{2} A(t, \rho) e^{-2 \delta(t, \rho)} d t^{2}+A^{-1}(t, \rho) d \rho^{2}+\ell^{2} g(t, \rho) d \theta^{2} \quad \phi=\phi(\rho, t)
$$

- Appropriate choices of A, δ, g interpolate between a BTZ-horizon at $\rho=0$ and dS
- The Brown-York energy density is

$$
\varepsilon=\frac{L^{2}}{16 \pi^{2} \ell^{2} G_{N}}\left(1-\ell \sqrt{A} \frac{\partial_{\rho} g}{2 g}\right)
$$

- An interpolating solution with $\partial_{\rho} g=0$ in the middle describes the continuous joining
- Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS

$$
d s_{3}^{2}=-\rho^{2} A(t, \rho) e^{-2 \delta(t, \rho)} d t^{2}+A^{-1}(t, \rho) d \rho^{2}+\ell^{2} g(t, \rho) d \theta^{2} \quad \phi=\phi(\rho, t)
$$

- Appropriate choices of A, δ, g interpolate between a BTZ-horizon at $\rho=0$ and dS
- The Brown-York energy density is

$$
\varepsilon=\frac{L^{2}}{16 \pi^{2} \ell^{2} G_{N}}\left(1-\ell \sqrt{A} \frac{\partial_{\rho} g}{2 g}\right)
$$

- An interpolating solution with $\partial_{\rho} g=0$ in the middle describes the continuous joining
- Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS
- The EOMs are organized in two constraint equations, plus dynamical equations
- First check: at the linearized level a consistent solution of the constraint equations exists

$$
d s_{3}^{2}=-\rho^{2} A(t, \rho) e^{-2 \delta(t, \rho)} d t^{2}+A^{-1}(t, \rho) d \rho^{2}+\ell^{2} g(t, \rho) d \theta^{2} \quad \phi=\phi(\rho, t)
$$

- Appropriate choices of A, δ, g interpolate between a BTZ-horizon at $\rho=0$ and dS
- The Brown-York energy density is

$$
\varepsilon=\frac{L^{2}}{16 \pi^{2} \ell^{2} G_{N}}\left(1-\ell \sqrt{A} \frac{\partial_{\rho} g}{2 g}\right)
$$

- An interpolating solution with $\partial_{\rho} g=0$ in the middle describes the continuous joining
- Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS
- The EOMs are organized in two constraint equations, plus dynamical equations
- First check: at the linearized level a consistent solution of the constraint equations exists

- The Dirichlet problem in gravity is not always well-posed
- In progress: full solution of the nonlinear problem

The complete prescription

- Putting together the initial small $T \bar{T}$ part of the trajectory and the inclusion of matter through the well-defined \mathcal{O}^{2} terms, including the uplift sector

$$
\begin{array}{rll}
\frac{d W}{d \lambda}= & -2 \pi \int_{M_{2}} \sqrt{-\gamma} T \bar{T} & y<y_{c} \\
\frac{d W}{d \lambda}= & -2 \pi \int_{M_{2}} \sqrt{-\gamma} \frac{1}{B_{c t}\left(\Phi_{u}(\lambda)+J_{u}\right)}\left(T \bar{T}+\mathcal{O}^{2}-\gamma^{i j} \partial_{i} \partial_{j} J\right) & y>y_{c} \\
& -2 \pi \int_{M_{2}} \sqrt{-\gamma} \frac{1}{B_{c t}\left(\Phi_{u}(\lambda)+J_{u}\right)}\left(\lambda^{1 / 2} \Pi_{u}^{2}-\gamma^{i j} \partial_{i} J_{u} \partial_{i} J_{u}-\lambda^{-1} B_{c t}\left(\Phi_{u}(\lambda)+J_{u}\right)^{2}-V\left(\Phi_{u}(\lambda)+J_{u}\right)\right)
\end{array}
$$

- Using the Hamiltonian path integral, we integrate only in regions of phase space with real energies
- The trajectory in theory space is piece-wise defined. At each value of the deformation λ we can use either the Lagrangian or the Hamiltonian formalism to compute the operators needed for $\lambda+\Delta \lambda$

$$
T_{\mu \nu}=-\frac{2}{\sqrt{-g}} \frac{\delta}{\delta g^{\mu \nu}} S \quad\left\langle\widehat{O}_{I_{1}} \ldots \mathcal{O}_{I_{n}}\right\rangle=\frac{\delta}{\delta J_{1}^{I_{1}}} \ldots \frac{\delta}{\delta J_{n}^{I_{n}}} W
$$

Dressing energies and bulk comparison

- Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction

Dressing energies and bulk comparison

- Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction
- E.g. for the pole patch consider the metric ansatz

$$
d s_{3}^{2}=\frac{\ell^{2}}{\left(1+\frac{\rho^{2}}{\ell^{2}}\right)^{2}}\left(-\rho^{2} A(t, \rho) e^{-2 \delta(t, \rho)} d t^{2}+A^{-1}(t, \rho) d \rho^{2}+\frac{\ell^{2}}{4}\left(1-\frac{\rho^{2}}{\ell^{2}}\right)^{2} d \theta^{2}\right)
$$

$$
\begin{aligned}
A=1, \delta= & 0 \\
& \rho=0: \text { horizon } \\
& \rho=\ell: \text { pole }
\end{aligned}
$$

Dressing energies and bulk comparison

- Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction
- E.g. for the pole patch consider the metric ansatz

$$
d s_{3}^{2}=\frac{\ell^{2}}{\left(1+\frac{\rho^{2}}{\ell^{2}}\right)^{2}}\left(-\rho^{2} A(t, \rho) e^{-2 \delta(t, \rho)} d t^{2}+A^{-1}(t, \rho) d \rho^{2}+\frac{\ell^{2}}{4}\left(1-\frac{\rho^{2}}{\ell^{2}}\right)^{2} d \theta^{2}\right)
$$

$$
\begin{aligned}
A=1, \delta= & 0 \\
& \rho=0: \text { horizon } \\
& \rho=\ell: \text { pole }
\end{aligned}
$$

- At first non-trivial order in G_{N} the scalar sees the background geometry and backreacts on the metric:

$$
A=1+G_{N}^{2} \Delta A+\mathcal{O}\left(G_{N}^{3}\right) \quad \delta=0+G_{N}^{2} \delta_{1}
$$

- Put a Dirichlet boundary cutting off the horizon. Explicit time-dependent solutions with correct BCs:
$\phi_{j} t=0$

Dressing energies and bulk comparison

- Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction
- E.g. for the pole patch consider the metric ansatz

$$
d s_{3}^{2}=\frac{\ell^{2}}{\left(1+\frac{\rho^{2}}{\ell^{2}}\right)^{2}}\left(-\rho^{2} A(t, \rho) e^{-2 \delta(t, \rho)} d t^{2}+A^{-1}(t, \rho) d \rho^{2}+\frac{\ell^{2}}{4}\left(1-\frac{\rho^{2}}{\ell^{2}}\right)^{2} d \theta^{2}\right)
$$

$$
\begin{aligned}
A=1, \delta= & 0: \\
& \rho=0: \text { horizon } \\
& \rho=\ell: \text { pole }
\end{aligned}
$$

- At first non-trivial order in G_{N} the scalar sees the background geometry and backreacts on the metric:

$$
A=1+G_{N}^{2} \Delta A+\mathcal{O}\left(G_{N}^{3}\right) \quad \delta=0+G_{N}^{2} \delta_{1}
$$

- Put a Dirichlet boundary cutting off the horizon. Explicit time-dependent solutions with correct BCs:

$$
\begin{aligned}
& -\Delta A \\
& -2 \delta_{1}-\Delta A \\
& -\phi_{2}
\end{aligned}
$$

$t=0$

- QFT side: To a given mode in the bulk we can associate an effective field χ_{j} of mass ω_{j} on the bry

$$
\begin{array}{ll}
\phi=\sum_{n} \mathbf{a}_{n} f_{n}(\rho) e^{i \omega_{n} t}+\mathbf{a}_{n}^{\dagger} f_{n}^{*}(\rho) e^{-i \omega_{n} t} & L_{\chi_{j}}=\frac{1}{2} \int d t d \theta\left(\dot{\chi}_{j}^{2}-\omega_{j}^{2} \chi^{2}\right)+\ldots \\
\pi=\sum_{n} \mathbf{a}_{n} f_{n}^{\prime}(\rho) e^{i \omega_{n} t}+\mathbf{a}_{n}^{\dagger} f_{n}^{* *}(\rho) e^{-i \omega_{n} t} & \chi_{j}(t)=\mathbf{a}_{j} e^{i \omega_{j} t}+\mathbf{a}_{j}^{\dagger} e^{-i \omega_{j} t} \quad \propto \pi\left(\rho_{c}\right)
\end{array}
$$

- On an oscillating coherent state $|\psi\rangle$ of the field χ_{j} we can compute energy and pressure At first order:

$$
\Delta T_{t}^{t} \propto \frac{1}{2}\left(\dot{\chi}^{2}+\omega_{j}^{2} \chi^{2}\right) \propto \omega_{j}^{2} \quad \Delta T_{\theta}^{\theta}(t) \propto \frac{1}{2}\left(\dot{x}_{j}^{2}-\omega_{j}^{2} \chi^{2}\right) \propto 1-2 \sin ^{2}\left(\omega_{j} t\right)
$$

- QFT side: To a given mode in the bulk we can associate an effective field χ_{j} of mass ω_{j} on the bry

$$
\begin{array}{ll}
\phi=\sum_{n} \mathbf{a}_{n} f_{n}(\rho) e^{i \omega_{n} t}+\mathbf{a}_{n}^{\dagger} f_{n}^{*}(\rho) e^{-i \omega_{n} t} & L_{\chi_{j}}=\frac{1}{2} \int d t d \theta\left(\dot{\chi}_{j}^{2}-\omega_{j}^{2} \chi^{2}\right)+\ldots \\
\pi=\sum_{n} \mathbf{a}_{n} f_{n}^{\prime}(\rho) e^{i \omega_{n} t}+\mathbf{a}_{n}^{\dagger} f_{n}^{* *}(\rho) e^{-i \omega_{n} t} & \chi_{j}(t)=\mathbf{a}_{j} e^{i \omega_{j} t}+\mathbf{a}_{j}^{\dagger} e^{-i \omega_{j} t} \quad \propto \pi\left(\rho_{c}\right)
\end{array}
$$

- On an oscillating coherent state $|\psi\rangle$ of the field χ_{j} we can compute energy and pressure At first order:

$$
\Delta T_{t}^{t} \propto \frac{1}{2}\left(\dot{\chi}^{2}+\omega_{j}^{2} \chi^{2}\right) \propto \omega_{j}^{2} \quad \Delta T_{\theta}^{\theta}(t) \propto \frac{1}{2}\left(\dot{\chi}_{j}^{2}-\omega_{j}^{2} \chi^{2}\right) \propto 1-2 \sin ^{2}\left(\omega_{j} t\right)
$$

- At first order the trace relation gives $\longrightarrow \neq \frac{\partial E}{\partial L}$

$$
\Delta T_{t}^{t}+\Delta T_{\theta}^{\theta}(t)=\pi \lambda\left(T_{t}^{t(0)} \Delta T_{\theta}^{\theta}(t)+T_{\theta}^{\theta(0)} \Delta T_{t}^{t}\right)-\lambda \mathcal{O}(t)^{2}
$$

- By energy conservation the time-dependent terms cancel. This fixes $\mathcal{O}\left[\chi_{j}\right]$ and leaves

$$
\Delta T_{t}^{t} \propto-\omega_{j}^{2} \frac{1-\pi \lambda T_{t}^{t(0)}}{1-\pi \lambda T_{\theta}^{\theta(0)}}
$$

Recap

- The $T \bar{T}+\Lambda_{2}$ deformation of a CFT_{2} describes 3-dimensional gravitational physics in patches of cosmological space-times
- The original prescription correctly accounts for the entropy of the cosmic horizon, but only captures the "pure gravity" sector.
- It is continuous only for the entropically dominant energy levels
- We are proposing how incorporate approx. local bulk matter at finite c
- This involves piecewise-trajectories in theory space, where first the theory is rendered finite and then matter is added
$v(\phi)$: u
- Thanks to matter, we can incorporate an "uplift" field that makes also the

中:
 subdominant levels continuous

Thenk you!

