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• Today’s talk: review of this framework and extension to include local bulk matter.

• [Time permitting, comment on extension of hyperbolic dS with ML]

• dS/CFT, dS/dS, FRW/FRW, FRW/CFT, matrix models, … [Strominger, ‘01; Anninos, Hartman, Strominger ‘17,

Alishahiha, Karch, Silverstein, Tong, ‘05, 

Freivogel, Sekino, Susskind, Yeh, ‘06, 
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…]
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• Top-down and bottom-up are related by explicit uplifts of AdS/CFT, thermal mixing among 
internal spaces [Dong, Horn, Silverstein, Torroba, ‘10; Silverstein, ‘22]
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1
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j (y))

dS
dλ

= 2π∫ d2x −gTT̄(x)

• In 2d, the limit  is well-defined. Deform the theory as y → x

• On the CFT, define

• Some properties of the deformed QFT:

Ti
i = − 4πλTT̄ −

c
24π

R(2)

πyεn∂yεn − ∂yεn +
π
2

ε2
n = 0

1) Trace relation:

2) Integrability of the deformation: known deformation of the energy spectrum
• For a CFT on a cylinder with size  (and zero momentum) L

y ≡
λ
L2

[Zamolodchikov, ‘04;

Smirnov, Zamolodchikov, ‘16

Cavaglia, Negro, Szecsenyi, Tateo, ‘16 ]
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Ti
i = − 32πℓGNTT̄ −

ℓ
16πGN
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• If  is a cylinder with radius-size L, and define the dimensionless energy M2

ε ≡ − L∫ dθ gθθuiujTij

• Agrees with the QFT trace formula using the dictionary λ = 8ℓGN, c =
3
2

ℓ
GN

y ≡
λ
L2

2) Same equation for the energy levels as function of   (  changes).y L

[McGough, Mezei, Verlinde, ‘16; Kraus, Liu, Marolf, ‘18]

[Brown, York ‘93

Balasubramanian, Kraus, ‘99]

[cf. Guica, Monten, ‘19]
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• QFT side: • Gravity side:

• Differential equations for the energy levels

[Gorbenko, Silverstein, Torroba, ‘18; Lewkowycz, Liu, Silverstein, Torroba, ‘19;

Shyam, ‘21; Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21]

(no momentum)



• The general local solution is ε(y) =
1

πy (1 ± η − 4C1y) y ≡
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L2



• The general local solution is ε(y) =
1

πy (1 ± η − 4C1y)
• For dS ( ), the trajectory cannot start at . Piece-wise trajectories starting from 

AdS:
η = − 1 y = 0

y ≡
λ
L2

[Picture from Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21]
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[Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21]
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• Join the deformation with  to the one at  
at this locus. Then continue with 

η = 1 η = − 1
η = − 1

• States with  have formally complex energies, and are discarded from the theoryΔ >
c
6

+ 𝒪(1)

• The theory has a finite number of states: discrete and bounded spectrum

• States with  are real but discontinuousΔ <
c
6

[Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21]



Recap so far

• : way to deform holographic CFT to capture the physics of pure gravity on 
bounded regions of dS
TT̄ + Λ2

3

• It reproduces the Gibbons-Hawking entropy of dS, including logarithmic 
corrections

• Current limitations, only pure gravity; discontinuity the  levels


• Next: how to include bulk matter and address these issues 

Δ ≪ c/6

• Produces a finite theory (type I operator algebra) 

[Gibbons, Hawking ‘77, Anninos, Denef, Law, Sun, ‘20]

[Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ‘21

Shyam, ‘21]

[cf. Chandrasekaran, Longo, Pennington, Witten ‘22]



Adding matter at large c

S = Sgrav − ∫ −g ( 1
2

(∇ϕ)2 + V(ϕ)) + ∫∂M3

−g |∂M3
Bct(ϕ)

• Start from the gravity side. E.g. with a scalar field:
[Hartman, Kruthoff, Shaghoulian, Tajdini, ‘18; Taylor, ‘18]
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• Conservation of the boundary stress energy tensor implies

∇iTij = 0 ⟹ (∂⊥ϕ − B′￼ct(ϕ)) ∂∥ϕ
∂M3

= 0

Dirichlet

• Identify the operator  dual to the bulk matter field through its radial momentum𝒪
Πϕ ≡

δS
δ(∂⊥ϕ)

𝒪 ∝

[Hartman, Kruthoff, Shaghoulian, Tajdini, ‘18; Taylor, ‘18]



• The flow can then be defined as

dS
dλ

= 2∫∂M3

−g |∂M3
Ti
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1
Bct(J) (16ℓGNTT̄ +

η − 1
4πGN
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J = ϕ |bry

• Turning off sources, J = 0
dS
dλ

= ∫ −g (TT̄ +
1 − η

λ2
+ 𝒪2)

• Identify the operator  dual to the bulk matter field through its radial momentum𝒪

𝒪 ∝ Πϕ ∼ ∂⊥ϕ



• The flow can then be defined as

dS
dλ

= 2∫∂M3

−g |∂M3
Ti

i = ∫ −g |∂M3

1
Bct(J) (16ℓGNTT̄ +

η − 1
4πGN

+ ewc(3−2Δ)𝒪2 − e−wc(3−2Δ)γij∂iJ∂jJ − Bct(J) − V(J))
J = ϕ |bry

• Quadratic operator, not well-defined because of UV divergences at coincident points

• Turning off sources, J = 0
dS
dλ

= ∫ −g (TT̄ +
1 − η

λ2
+ 𝒪2)

• Our proposal: combine trajectories to avoid these ambiguities

• Identify the operator  dual to the bulk matter field through its radial momentum𝒪

𝒪 ∝ Πϕ ∼ ∂⊥ϕ
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Proposal for finiteness
• Deforming with pure  gives a finite theory: spectrum discrete and truncatedTT̄

εn =
1

2π2y (1 − 1 − 4π2yεn(0))
[Smirnov, Zamolodchikov, ‘16]

• Makes the theory non-local at scales ∼ yc

First perform a small  deformation, then continue the trajectory with TT̄
TT̄ + 𝒪2 (+Λ2)

• Should give a QG theory in (A)dS  which is well-defined and describes approx. local 
matter. Non-local effects at very high energies where QG effects become important.

3

• For dS, still need to address continuity of the  energy levelsΔ ≪ c/6

•  is now well defined𝒪2

• Proposal:

⟨n |𝒪𝒪 |m⟩ = ∑
p

⟨n |𝒪 |p⟩⟨p |𝒪 |m⟩

[McGough, Mezei, Verlinde, ‘16]



Uplift sector and continuity
• Continuity is achieved for  because at the matching point the  vanishesΔ = c/6

• Geometrically, because the extrinsic curvature vanishes at the horizon



Uplift sector and continuity
• Continuity is achieved for  because at the matching point the  vanishesΔ = c/6

• Geometrically, because the extrinsic curvature vanishes at the horizon

• For the other BH states ,  , continuity requires an interpolating 
scalar to smooth out the transition between the remaining AdS-BTZ patch and the 
newly-created dS patch:

Δ < c/6 rh < ℓ = rjoin



Uplift sector and continuity
• Continuity is achieved for  because at the matching point the  vanishesΔ = c/6

• Geometrically, because the extrinsic curvature vanishes at the horizon

• For the other BH states ,  , continuity requires an interpolating 
scalar to smooth out the transition between the remaining AdS-BTZ patch and the 
newly-created dS patch:

Δ < c/6 rh < ℓ = rjoin



• Consider the ansatz

ds2
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ε =
L2

16π2ℓ2GN (1 − ℓ A
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• First check: at the linearized level a consistent solution of the constraint equations exists

ϕ

g

ρ

1

2

1

[Bizon, Rostworowski, ‘11]

• Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS



• Consider the ansatz

ds2
3 = − ρ2A(t, ρ)e−2δ(t,ρ)dt2 + A−1(t, ρ)dρ2 + ℓ2g(t, ρ)dθ2

• Appropriate choices of  interpolate between a BTZ-horizon at  and dSA, δ, g ρ = 0

ε =
L2

16π2ℓ2GN (1 − ℓ A
∂ρg
2g )

ϕ = ϕ(ρ, t)

• The Brown-York energy density is

• An interpolating solution with  in the middle describes the continuous joining∂ρg = 0

• The EOMs are organized in two constraint equations, plus dynamical equations
• First check: at the linearized level a consistent solution of the constraint equations exists

• The Dirichlet problem in gravity is not 
always well-posed

ϕ

g

ρ

1

2

1

[Bizon, Rostworowski, ‘11]

[e.g. An, Anderson ‘21 ]

• In progress: full solution of the non-
linear problem

• Consistent: moving away from the horizon the transverse circle grows in AdS and shrinks in dS



The complete prescription
• Putting together the initial small  part of the trajectory and the inclusion of matter through the 

well-defined  terms, including the uplift sector
TT̄

𝒪2

• Using the Hamiltonian path integral, we integrate only in regions of phase space with real energies

dW
dλ

= − 2π∫M2

−γTT̄ y < yc

dW
dλ

= − 2π∫M2

−γ
1

Bct(Φu(λ) + Ju) (TT̄ + 𝒪2 − γij∂iJ∂jJ)
−2π∫M2

−γ
1

Bct(Φu(λ) + Ju)
(λ1/2Π2

u − γij∂iJu∂iJu − λ−1Bct(Φu(λ) + Ju)2 − V(Φu(λ) + Ju))

y > yc

• The trajectory in theory space is piece-wise defined. At each value of the deformation  we can use 
either the Lagrangian or the Hamiltonian formalism to compute the operators needed for  

λ
λ + Δλ

⟨𝒪I1
…𝒪In⟩ =

δ
δJI1

…
δ

δJIn
WTμν = −

2
−g

δ
δgμν

S
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• Gravity side: explicit solutions describing time-dependent local bulk matter and their backreaction

• At first non-trivial order in  the scalar sees the background geometry and backreacts on the metric:GN

• E.g. for the pole patch consider the metric ansatz

ds2
3 =

ℓ2

(1 + ρ2

ℓ2 )
2 −ρ2A(t, ρ)e−2δ(t,ρ)dt2 + A−1(t, ρ)dρ2 +

ℓ2

4 (1 −
ρ2

ℓ2 )
2

dθ2

A = 1 + G2
NΔA + 𝒪(G3

N) δ = 0 + G2
Nδ1

• Put a Dirichlet boundary cutting off the horizon. Explicit time-dependent solutions with correct BCs:

A = 1, δ = 0 :
: horizonρ = 0

: poleρ = ℓ

ρρ

ρ



• QFT side: To a given mode in the bulk we can associate an effective field  of mass  on the bryχj ωj

Lχj
=

1
2 ∫ dtdθ ( ·χj

2 − ω2
j χ2) + …

• On an oscillating coherent state  of the field  we can compute energy and pressure 
At first order:

|ψ⟩ χj

χj(t) = ajeiωjt + a†
j e

−iωjt

ϕ = ∑
n

an fn(ρ)eiωnt + a†
n f*n (ρ)e−iωnt

ΔTθ
θ(t) ∝

1
2 ( ·χj

2 − ω2
j χ2) ∝ 1 − 2 sin2(ωjt)ΔTt

t ∝
1
2 ( ·χ2 + ω2

j χ2) ∝ ω2
j

π = ∑
n

an f′￼n(ρ)eiωnt + a†
n f ′￼*

n (ρ)e−iωnt ∝ π(ρc)



• QFT side: To a given mode in the bulk we can associate an effective field  of mass  on the bryχj ωj

Lχj
=

1
2 ∫ dtdθ ( ·χj

2 − ω2
j χ2) + …

• On an oscillating coherent state  of the field  we can compute energy and pressure 
At first order:

|ψ⟩ χj

ΔTt
t ∝ − ω2

j
1 − πλTt(0)

t

1 − πλTθ(0)
θ

χj(t) = ajeiωjt + a†
j e

−iωjt

ϕ = ∑
n

an fn(ρ)eiωnt + a†
n f*n (ρ)e−iωnt

• At first order the trace relation gives

ΔTθ
θ(t) ∝

1
2 ( ·χj

2 − ω2
j χ2) ∝ 1 − 2 sin2(ωjt)ΔTt

t ∝
1
2 ( ·χ2 + ω2

j χ2) ∝ ω2
j

ΔTt
t + ΔTθ

θ(t) = πλ (Tt(0)
t ΔTθ

θ(t) + Tθ(0)
θ ΔTt

t) − λ𝒪(t)2

• By energy conservation the time-dependent terms cancel. This fixes  and leaves 𝒪[χj]

π = ∑
n

an f′￼n(ρ)eiωnt + a†
n f ′￼*

n (ρ)e−iωnt ∝ π(ρc)



Recap

• The  deformation of a CFT  describes 3-dimensional gravitational physics in patches 
of cosmological space-times

TT̄ + Λ2 2

• The original prescription correctly accounts for the entropy of the cosmic horizon, but only 
captures the “pure gravity” sector.

• It is continuous only for the entropically dominant energy levels

• We are proposing how incorporate approx. local bulk matter at finite c
• This involves piecewise-trajectories in theory space, where first 

the theory is rendered finite and then matter is added

• Thanks to matter, we can incorporate an “uplift” field that makes also the 
subdominant levels continuous




