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EFT’s & Positivity bounds

—EFT’s are the common framework to describe phenomena below a certain energy.
—Given a set of DOF, write down all operators allowed by the symmetries

—Is every operator possible? With arbitrary prefactor?

—The seminal work of Allan Adams et al, 2006 showed that, by assuming unitarity, locality

and Lorentz invariance of the UV completion, there are bounds on some coefficients.

—This 1s very interesting theoretically and experimentally.

—Much much work has followed since then, and 1s happening today.

e.g. Caron Hout and Van Duong 2020



EFT’s & Positivity bounds

—Is 1t possible to extend such a program to theories with Lorentz invariance, and in

particular boosts, are spontaneously broken?
—Typical regime for Cosmology and Condensed matter
—Why that would be interesting?
—Cosmology:
* Not so many data
e Peculiar looking theories:
—QGalileons, Ghost Condensate

» While strange behaviors in Lorentz invariant limit, not clear the broken

phase can be ruled out.
—Condensed Matter

* One could perhaps argue that these kinds of Lagrangians are much more numerous to

probe experimentally.



EFT’s & Positivity bounds

—Using that the Lorentz-breaking EFT is originating from a Lorentz preserving one 1s

not easy.

—Normal bounds are based on 2 — 2 scattering. But in Lorentz breaking background

operators with many legs become relevant.
(00)" — (60)"*(066)’

—not much 1s known about scattering 1, — ™M

—Sometimes it 1s very hard to connect the Lorentz preserving and Lorentz breaking

theories: e.g. fluids. There 1s no straightforward limit.

—Therefore, try to study directly the broken phase.



Review of Lorentz Invariant case

—Useful/needed properties. The S-matrix:

1. It is a physically well-defined function for all real s.
2. It is field redefinition independent.

3. It has an analytic continuation to the upper and lower half complex s-planes, with
singularities residing only on the real axis, including unitarity cuts for energies |s| > 4m?
where m is the mass gap in the theory, which is assumed to be non-zero. This property
is a consequence of locality and Lorentz invariance.

4. The discontinuity across the cut on the positive real axis is 7 X a positive number. This

is a consequence of unitarity.

5. It satisfies a crossing symmetry: M(s)* = M(4m? — s*). This is a consequence of
locality and Lorentz invariance.

6. It decays as |[M(s)|/s* — 0 as |s| — oo. This property follows from the minimal

requirements to derive the Froissart bound [16].



Review of Lorentz Invariant case

—The S-matrix in an EFT, in the forward limit, will take the following form

52 4
M(é) — (0—|—C2A4 —I—C4A8
—Then A M(S) €2 t .
ds I QmA—4 : |5
—Deform contour by analyticity
—Circle at infinity negligible
—Integral along negative cut A
—AAAAAAAAAS) ) COAAAAAAAA—

e =along positive cut

—1ntegral along positive cut=

¢ X ¢y, with ¢, a non-negative number.

- = 20




Doing the same for Lorentz breaking EFT’s
—Many difficulties

—Most important: with boosts, the in and out states, no matter how energetic, can be
mapped to the same state. So, they are defined no matter what the center of mass

energy S 1s. S0 S-matrix is defined at all S

* Without boosts, this cannot be done. It 1s clearly impossible to scatter a 1 TeV
phonon, because it simply does not exists (as there 1s a privileged reference

frame).

— Other difficulties relate to analyticity, crossing, etc.. But the one above seems just a

show stopper.

Grall and Melville 2021

—Explorations with assumptions made ine.g. o "~ 5o Sore

e Let us try to find the same ingredients that we use for the S-matrix, but controlled.



UV/IR control

—Something that we control both in the UV and IR

—Idea: correlation functions of conserved currents (or the stress tensor), as they are

defined at all energies.

—In the UV, we assume the theory goes to a conformal fixed point, a CFT. Currents are

primary operators and their 2-point function is fixed:

(T (=k)J¥ (k) = (kR — ™ k) k4

— Also, they are field-redefinition independent

 Which correlation function to study?

—Since we expect causality to play a role, choose ret. or adv. Green’s functions:
GR (z —y) = i0(2" — ") (O|[J"(x), J"(y)]|0) .
GH (x — y) = —if(y’ — 2) (0|[J*(x), " (y)]|0) .



Analyticity
C apen = [deran
R

- G%(x) = 0 for 2° < 0 and for 2% > 0
— = Integration region restricted to  (FLC): 2° > 0,22 < 0

—Consider complex four-momentum pP. : convergence for

Re(—ip-x) < 0orp™.2 < 0as |x] — oo
—Or: plm c FLC

—So, for p'm c FLC , é%/ (w’ p) is analytic.
—Analogously, éffly (w7 p) 1s analytic 1n backward light cone.



Analiticity

—We explore this region by choosing:

p = ko + w€

—where ko,féRd_l : |€‘ = 5 < 1 and

WM > 0 for Gr and w'™ < 0 for G4

G (w,p) ifw™ >0,

—Let us now define: eLL ( w) _ ]
G4 (w,p) if W™ <0,

—This function is analyticon C \ {(—o0,—m) U (m,00)}



Analiticity
— . Ny — G% (w,p) if w™ >0,
GY (w,p) if W™ <0,

C \ {(_007 _m) U (m7 OO)}

_Consider w € R :

lim (é’“’(w +ig) — GM(w — 25)) = 2/ d%a e~ (0|[J*(z), J¥(0)]]0) (8

€_>O Rd

— /d (017" (Zw ) (0)[0) — (11 > 1,2 5 0)

= z/ A%z e " <O|e_ZP"3J“ eif (Z |P,) ) (0)[0) — (u <> v,z <> 0)
Rd

=i(2m)" Yy {0 (p— Pu) (0]J(0)[ Pu) (Pl J"(0)[0) = 6 (p + Pp) (0]77(0) | P) (Pu]J*(0)]0)

—Assuming a mass gap: PT? > m, > () ,the difference vanish in \w\ < m ,so

function is analytic except for the two cuts.

— Analiticity ok



Positivity along cut
—Since we aim for a contour argument similar to S-matrix one, we need positivity along

the cuts.
lim (é“”(w + i) — GM(w — 25)) =

e—0

i(2m)" ) {6 @ (p — Po) (017%(0)| B) {Fal 77 (0)]0) = 6D (p + P) (0177 (0)| Po) (Fn] J#(0)]0) }

—Contract with areal V#1/¥ , divide by w and 1ntegrate along the positive cut. Only

one ¢ — function contributes:

o | EeYe=i [ Y80 =R (RLPOVI0F

w* m
(m,00) cut

~thisis ¢ x (positive)

e Stmilarly for negative cut:

(zi)d / L )vﬂv,,:—z/__m dw25d)p+P (P.]J(0)V,,|0)]?

CLJ
(—o0,—m) cut

e forodd ¢ ,thisis 7 X (positive) . Positivity ok.



Crossing Symmetry
—Useful, though not necessary, property:

d®z e™*0(—2") (0][J"(z), J*(0)]]0)

—1

A"z e="*0(2°) (0[[17(0), J*(2)]|0) = G’ (p).

==/,
——i [l e () 0] (—0), 4 0))0)
-],

—In particular: G"*(w) = G**(—w) when ko =0

—Reality of Green’s function: é/é’/ (p) = é/f{/(— p*)*

—Combining: é,[él/ (p) _ GZLL (p* ) sk



Gauging the symmetry

—UV-IR connection

—Need to be sure we are computing, in the IR, with EFT, the same quantity that in the

UV has the CFT scaling.

—Integrated-out heavy modes generate contact terms at low energies. These are not

them would give IR-UV mismatch.

encoded in the Noether current constructed from the EFT. Therefore, neglecting

* To keep track of contact terms: gauge the symmetry & interpret the correlation

functions of currents as functional derivatives with respect to the non-dynamical gauge

bosons.

 Let us be explicit. Notice

G (z —y) = i0(2" — y°) (O|[J"(x), J* (y)]|0) = i (O T{J*(2)J* () }0) — i O[] (y)J"(x)[0) .

—The last term does not produce contact terms, as only low-energy states contribute:
i / d?z e (0[J7(0)J*(2)[0) = i(2m)* Y 6D (p + P,) (0[J*(0)| Py} (Pu].J*(0)|0)
Rd

n
—but time-ordering has a convolution and so they contribute




Gauging the symmetry
G (x —y) = i0(2” — y°) (O|[J"(x), J* (y)]|0) = i (O|T{J"(x)J*(y) }|0) — i 0] () J*(2) 0) |

—Time-ordered part:

OFTLI @) T }0) = 5 [ Do e ket €010z

? diz L
—Non-ordered part: = / Do e Jrd (¢)

—Go to Shroedinger picture:

(01 (y)J*()|0) = (0]U (+00,”) J(o, (y)U (4", 2°) Jf;) (2)U (27, —00)[0)

—Inserting unity

I — / D) |6(2)) (6()

é() 0
—and time evolution: <¢( U )\U(y T )\gb( X)) = Do G d%z L(¢)
* We get: @)
(0]J" (y /Dqs /qu ) JY(o(°, ) J*(p(2°, ) / Depy ¢ S0~ 17 £@09)

/ Do, ¢ Ll %0 £062 / Dy o oot £00) (26)
P(x)



Gauging the symmetry

—So we can write, gauging the symmetry:

G%V(xv y) —
i

-~ (/ Deso ¢ Jet 1 EL00A) g (50(2)) ¥ (d0(y)) A

| Po@) [ Potm) 7o )0t @) [ Doy e BB

P(Y) g0 (2) (9) a0 (1)
/ Doo e’ Jy0 d% £(¢2’A“2 ) / Do, e Jooodta £(¢1’A“1 ) .
P () AL23)_g

—or equivalently as functional derivative:

. 2 ; 0
G/ﬂ/(x y) i . 5 O) /D¢ 7 fRdd :I?[,(qﬁo A( )) B
Z O ()5 A O

f—l—oo A% £(¢3 A(3))

Do (z / Do (7 Do e %
SAV (z) 5 AP ( / o)

2 D¢ 6@ fy ddacﬁ §b2 A(2) / DQ§ 7 f dx £(¢1 A(l))
:B 1 .
A(1,2,3)

P(Z)




Gauging the symmetry

—. Z 0 0 dix E(qb A(O))
G (x,y) == | — / D ¢ Iz ’ —

/ X / Do) [ Doy )

¢(Y)

5A

?(y) g0 (2) 0 (1)
Depy ¢ Jio 4’ £(92:417) / Dy ¢ I A1 £(01:41)
P(x)

AE}’Q"%):O

—This is the expression in the UV. In the IR, ¢?BFT (¢4 / Dy, " BFT(PrbeAu)

—and we generate contact terms. They are captured by the gauge bosons dependence and

therefore by the functional derivatives:

—only from the T-ordered part, because contain the same gauge boson.

e UV and analyticity control.



Contour argument

—Consider, for example:

- I 1 w? C
00/, \ _ , d—2 | 2
@)= lor—ga+ e (e




Contour argument

—Consider, for example:

™) = [y + oy

/

non-relativistic speed

w2

Co

\

cutoff

(1 —c2€?)?

contact terms




Contour argument

—Consider, for example:

= g | e @) o (&

non-relativistic speed
contact terms

cutoff

_ 7§de002 )—27”’(( =gy 1 e

—For. d = 3, GOO()waorw%oo D R

—circle negligible

C9 |
= (—02@“2)2 - d, ZD




Without mass gap

— At loop level, the cut extends all the way to origin. One can use this contour (or, using

crossing symmetry, just the upper contour)

—S0, no mass gap needed. |ﬂ




An example



Conformal Superfluids

—Appl ampbl f the EFT b Hellerman et al, 2015
PPLY SetuP 10 ex pic o © Y Monin et al, 2017

—Motivated by CFT studies, they match an operator at large charge with a state (at large
charge): correlation functions of large charge operators can be computed with an EFT
around this state. This state spontaneously breaks the symmetry, and also breaks, due to

finite chemical potential, also time translations.

—An EFT can be constructed, using the non-linear realization of symmetries. The full

symmetry 1s (could be an inflationary model!)

SO(d,2) x U(1) brokento rotations and spacetime translations

—Simplest construction: Cuomo, 2021
—Write diff. invariant action with Wyel invariant metric: ° QW = Guv |9a6 O Xaﬂ X ‘
—and ' X = pt+7(t, x)

—(we will Gauge 1it)
1 €1 3 ~ G 3 3
e Leading operator: S 6 d°x\/—g = 6 d’z+/—g|0x



JJ calculation
—The EFT action reads, at NLO:

0|V y|)? Vi, Vx|’ Vi VY
EZ%MP_Q@H X (2< 9, V) m( Y x)ayw)

Vx| Vx|3 Vx|?
7
N /T V.xVux, — v A
4 |Vy 2 [Vx|3 v,uX— X K

—Gauge symmetry:

m(x) = m(z) + Ax), A, (x) = A, (x) + I, A(x)

—Several contact terms.

—Expanding to quadratic order:

3 1 )
Loy =2 4+ 22 [(7% F A = S (O — A+ (7 + AO)] + % —r0i + 2A°07 £ A’OA")
) | . o
+ % [—WD# +2A%0, 7 — Aldi + (A°)? + AO@A@} +

+ (b T d) 1@ ((9()14@')2 + QAO(az'Ai)} — 4i (aiAj - 0in)2 ;

21 v



JJ

—Noether current:

calculation

5

0 pcy Aoy ey
Iy = [LC1T0 T
2 p p
- C 2cs ..
J]ZV — % ;1T Iug 87;77,
—We compute the correlation functions of the Noether currents, using
C 2(cyg 4 ¢
L(2),4=0 = EW cs Tt G 3)7
2 i

—and add the contact terms, as prescribed by the path integral formula:

1 1 x
5 [ Dottt

(0))
U

2
(qbo,A,SO)) 0°L (qbo,A
SAY (2)6 A (z)

AP =0



JJ conservation

— We notice that it 1s true that

k(T (— k)T (k) = 0

—without any contact terms.
« Proof: consider C = [ D¢ ¢! /4*v£@A)  and change variables ¢ = e @),
and use Py — P Stoget o _ / Do e J 4% £(6/(6).4,)

e Gauge invariance L (¢'(¢), A, —0,a) = L (P, A,)
= L(¢'(¢), Ay) = L (¢, Ay + Ouc)

/D¢€zfddx£(¢Au+8 W) /D¢€Zfddx£(¢A ) (1—|—2/dd£€8 Oz( )52i ))

e So:




JJ conservation

—0: _ i [dda £(¢,AM)/ d 0.5
0 /D(b e dz a“&(x)&élu(x)

; d ./ / / 6»9
_ d y i [ d% L(p(x'),Av(2))
/dxoz(x)@x /D¢e 54, (7)

5 ; d ./ / /
_ i [ g ) Doy o 4%’ L) Au(@))
@/d r a(x) 0, TNES / b e

5 ; d ./ / /
= 0= 0. Do ¢ [d%x" L(p(z"),Ar(z"))
0A, () / b

—Take a second derivative:

- O: aa;,u

52 / . d . ./ / /
D¢ e’ [d%x" L(d(x"),Ap(z)))
5Au(x)514y(y)

Ap=

—This 1s our functional form. But notice that it includes the contact terms.



JJ conservation
=30k (JM(—k)JY (k) =0

— —> it has 2 tensorial structures (non relativistic theory):

W(JH(=k)JV (k) = A (k'K — " k*) + B (k'K — 67 k)

—Wordking in d=3:
A [LCq e (w2 — kz) k* C3 wrk?

2R (k) (- k)

5 _ [LC e (w? — k:2)2 cs w2 (w? — k?)

Lw? = k) p (w2 - k?)” (w2 - k)



Positivity bounds from JJ

—There 1s a rich kinematical structure. Consider:

~

flw) = G (k)V,.(k)V, (k)

—Take ky = O (as it does not change the result)

—Take the most general

A

Vw) = a(w)K + Bw)E +~y(w)F

— (expanded 1n a base)

—Get: =

f(w) = Aw?(1

—Contour argument:

i)

B

. ["(0) >0

— &) (B +77) — B&wy’

= ir f"(0)

kz(&),ko—l—&)é) |




~

= f7(0) = 03

eu-¢)
(1 —¢€2/2)?

52—03

Positivity bounds from JJ

52

—.& — 1 with v £ 0 we obtain

_letting £ — 0 we get

(1—-&2/2)

d > 0

-~ w ~w

b+d>0

— Look at terms in ~? : most stringent is for ¥ = 0 :

>
b+d —

(&2

52

252+b(52+72)+d(52= 7 )20

£ €0,1)



— bound :

Positivity bounds from JJ

C2
1
b+d(

€3 o (1—¢&%/2)° |

—&) b+d — £2

c3/(b+d) -0.5:—

-1.5F

-2.0

0.5+

0.0~

-1.0-

£ € 10,1)

1.0

|||||||||||||||||||




TT calculation
—We need to go to NNLO. It 1s possible to classity all the operators, and at quadratic

order, there are only 3 independent ones:
/dgx\/ (— — CQR -+ ch“”ﬁﬂxéVX + C4ft22 -+ 05}%,,}?“” -+ cﬁﬁgﬁ“o)

ffig — éAM 0 AX
—We consider (T (—Fk)T"(k)) ,again, defined through path integral

—Conservation constraints the form: TP (— )P ()Y = C(k) TI"77 (k) + D (k) ﬁ,ul/pa( k)

with
1 1
[TH7Po = 5 (HP? + mHIP) — ¥ 17T“”7Tp0
- N N N N 1 o
[[HvpPe — — (7_‘_,up7_‘_1/0 i THo ZVP 4+ VO T HP i 7_‘_1/pﬂ_,ua) . 7_‘_/11/7_‘_,00’
4 d— 2
where
[T R%
pv o — o pv kK
7T - 77 k2 9
m l.mn
o L K™k




TT conservation

—Similar to current:

0= —iVu / D ¢' /4% V=9 L(#(2).gp0(2')) ! N
vV =9(x) 09u()
1

v, [ pg s )
(\/ g(@ )59W

—when act with second derivative, we hit the Christoffell:

_ ! 0 . ! & et J 4% V=g L(9(a").gas(@"))
’ \/_g(y) 5gp0(y)vx (\/ ( )5g,u1/ /D )

_ v, ! Ji [ 44’ =5 £(6().905 ("))
. (\/(g(x)(g(y))@w( )90 (Y / P )

| 5 L o) (2 i LA G £(6()05(0)
V=) 20,-0) (\/ —Q(I)FQW( )> (5997 / b )




TT conservation

—At uv = Nuv
2
0 = Oy ( ° / Do ' /4 V=g ﬁ(qﬁ(w’)vw(w’)))
390 ()39 (1)
A

: / [dda’ /=g L / /
. D¢ ezf z' \/—g (Qb(iv),gaﬁ(x)))
\/_g(ﬂf) 59:00' (y) Juv="Nupv (5997

Juv="Nuv

—The second term is proportion to 5@ ($ —Y ) and to the vev of the stress tensor. (for

us it is proportional to Cp)



TT calculation
—We need to go to NNLO. It 1s possible to classity all the operators, and at quadratic

order, there are only 3 independent ones:
/dgx\/ (— — CQR -+ ch“”ﬁﬂxéVX + C4ft22 -+ 05}%,,}?“” -+ cﬁﬁgﬁ“o)

ffig — éAM 0 AX
—We consider (T (—Fk)T"(k)) ,again, defined through path integral

—Conservation constraints the form: TP (— )P ()Y = C(k) TI"77 (k) + D (k) ﬁ,ul/pa( k)

with
1 1
[TH7Po = 5 (HP? + mHIP) — ¥ 17T“”7Tp0
- N N N N 1 o
[[HvpPe — — (7_‘_,up7_‘_1/0 i THo ZVP 4+ VO T HP i 7_‘_1/pﬂ_,ua) . 7_‘_/11/7_‘_,00’
4 d— 2
where
[T R%
pv o — o pv kK
7T - 77 k2 9
m l.mn
o L K™k




TT calculation

pw?(w? — k2)2 1 k4(w2 — k2)2 1 (w? — k2)2 (wQ(w2 — k2) + k4)

<= 2 (w? — c2k*)2 2+ es) + [ (w? — 2k?)? “r 24 (w2 — c2k*)? =
LR R (o4 e) K@’ — k) (7
dp (W2 —ckh? 2 o (W c2RRP
k' (w? — K 1 k*(w? — k%)? 3 1 k(w? — K
0 = (2 305) +5, e
1 (ca + c3)? K'w?(w? — k%)? ;
poo (w2 — c2k*)3

—Contract with general symmetric 2-tensor: <TWTPU>AW Apa

A = oK, K,+BE,E,+vF,F,+a (IA(MEV 1 [A(VEM) +8 (IA(NFV 1 IA(,,FM) +5 (E#FV 4 E,,FM)

—We get the bound:

2 <T'W/Tpa>su bI.A,LwApJ —

C
5 (B =) +45°| + D¥°



TT positivity

—Explicitly

4646%¢, + 2 [(2 _ 52)2&2 +(1— £2 +§4)52} cs + €2 ((2 — 52)2&2 n 52) Co

1 — &2
45452 (CQ —+ 03)2

>
T 2-¢&2 C1

—Not hard to show that the most stringent bounds are:

0520

and

CGZO

)

dey + 25 + cg > 4(ca +c3)? e |.




Summary of the bounds
—By working at NLO and NNLO, we obtained:

cy > 0 (for healthy fluctuations),

2 /52
bfd(1_€2) bfdz - §2/2) ’
d>0,
b+d>0,
deg 4 2c5 4+ cg > 4(eo +¢3)? /e
cs > 0,

C@ZO.



Loop corrections?

—So far, we worked at tree-level. In this particular case, up to NNLO d=3, there are no-

loop corrections. In fact, in canonical normalization:

L= 1 1 1
=3 |:7-‘:(32 - _(aﬂc)ﬂ - —7 7S 37'Tél | 62;328271'68271'0 | 3022;3 O’ 0.7
2 2 Cl/ MS/Q C1 U C1 4 Cl/ /LS
| 04;5;2 Pr.0m. + ...
C1 U

—and combinations of C2.3 and c4.5.6 do not have the right p-dependence o

make these coefficient run (it will happen at higher order).

—In general, however, no problem: one can do the loop with this contour, and use a finite
w

radius:

£
\__/



Conclusions

—We have constructed a method to derive robust bound on coefficients of operators

where Boosts are spontaneously broken.
—Method based on 2-point functions of conserved current and stress tensor.

—proved that they have the right analytic properties and also controlled UV behavior
thanks to CFT UV assumption

—then argument similar to S-matrix derived.
* Many applications:
—Light in Material
—QCD at finite U
—Inflation
e Limitations:
—need to go to high order to ensure convergence
—presence of the contact terms

e ...Perhaps, we just started... perhaps...
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What 1s a fluid?

‘ wikipedia: credit e
National Oceanic and Atmospheric !
—l Administration/ .
Department of Commerce x
Orpe + 0; (pevy) =0
tPe i \PeUy

| |
Oyvy + v, 0,;v; + —0;pg = viscous terms

—From short to long £

—The resulting equations are simpler
—Description arbitrarily accurate

—construction can be made without knowing the nature of the particles.

—short distance physics appears as a non trivial stress tensor for the long-distance fluid



Do the same for matter in our Universe

% %k —l credit NASA

with Baumann, Nicolis and Zaldarriaga JCAP 2012

with Carrasco and Hertzberg JHEP 2012

V2, = H? (6pe/p)

—From short to long

Oy Pe

—The resulting equations are simpler

—Description arbitrarily accurate

1
8ﬂ]€ T

Hpy

0; (pgvé) — 0

UZ@jvé -+ &L(I)g — 8j7’ij

—construction can be made without knowing the nature of the particles.

—short distance physics appears as a non trivial stress tensor for the long-distance fluid

2
Tij ™ 5z'j Pshort (Ushort T (I)Short)



Dealing with the Effective Stress Tensor

* For long distances: expectation value over short modes (integrate them out)

<7_z'j (3_7)7 t)>long fixed — fvery complicated ({Ha Qma co oy Mdmy -+ - -y pf(w)}past light cone)

At long wavelengths \U/ Taylor Expansion

<7_z'j (f’ t)>long fixed — / dt/ [C(t, t/) %(fﬂa t/) + O ((510€/p)2>]

* Equations with only long-modes DARIK MATTER

g’ /\
21 § TiNe

Opvy + v70;v; + O,y = a/ﬂw'

MATTER \A

every term allowed by symmetries

e cach term contributes as factor of
) Pl k

b=\
p Fxt, e ‘e

—~ — K1



Perturbation Theory within the EFT

0P
P

* In the EFT we can solve iteratively §,,v,, &, << 1 ,wWhere 0, =

V20, = H? (0pe/p)
Orpe + Hpe + 9 (pevy) =0

@vé T —|— 5’2(1)5 — 83713

e Two scales:

s i
k [Mean Free Path Scale| ~ k (—'0> ~ 1| ~ kni




Perturbation Theory within the EFT

* Solve iteratively some non-linear eq. §, = 5§1) + 522) + ... <1
e Second order:

2 2
9260 = (5l§1)) = 6(z) = /d%’ Greens(z, x') (5&1)(:1:’))

e Compute observable:

(Be(21)8e(2)) D (0 (20)0;” (2)) ~ / d'ayd') (Green's)* (57 (a})%6; (25)%)
* We obtain Feynman diagrams

e Sensitive to short distance X: J

/ /
* Need to add counterterms from 7;; O c§ 0¢ to correct

* Loops and renormalization applied to galaxies



Perturbation Theory within the EFT Pajer and Zaldarriaga 2013

* Regularization and renormalization of loops (no-scale universe) py, (k) = p : 3 ( kk )
NLT \ANT

—evaluate with cutoft:

A E\? | E\? k
Pl—loop — lex ( > (—) P+ C?mte <—> P11 + subleading in k—

7 k—NL ENL kNL NL

@/

— divergence (we extrapolated the equations where they were not valid anymore)



Perturbation Theory within the EFT Pajer and Zaldarriaga 2013

* Regularization and renormalization of loops (no-scale universe) py, (k) = p : 3 ( kk )
NLT \ANT

—evaluate with cutoft:

A E\? | E\? k
Pl—loop — le\ ( > <—) P+ C?mte <—> P11 + subleading in k—

7 ENL ENL kNL NL
0p ?
(), /
— divergence (we extrapolated the equations where they were not valid anymore)

— we need to add effect of stress tensor 7;; O C?@

2
k /A
Py . =c|— ) Piu ,choose ¢s=—¢ + Cs finite

ke,

E\? | L\ k
:> P1_100p + P11, c; = Cs finite <—> P+ Cffmte <—> Py1 + subleading in —
kN kNt kNt

—we just re-derived renormalization

—after renormalization, result 1s finite and small for . <1



Perturbation Theory within the EFT Pajer and Zaldarriaga 2013

* Regularization and renormalization of loops (no-scale universe) py, (k) = p : 3 ( kk )
NLT \ANT

—evaluate with cutoft:

A A A k
P 1o0p = Cfl\ ( > c?mte (—) Py1 + subleading in .

/ kNL kNL NL
0p ?
(), /
— divergence (we extrapolated the equations where they were not valid anymore)

— we need to add effgct of stress tensor 7;; O C§5g

A
A
Pll, cs — Cs choose Cs = —(C (k_NL + Cs, finite

E\? | L\ k
:> P1_100p + P11, c; = Cs finite <—> P+ Cffmte (—> Py1 + subleading in —
kN kNt kNt

—we just re-derived renormalization

—after renormalization, result 1s finite and small for . <1



Perturbation Theory within the EFT Pajer and Zaldarriaga 2013

* Regularization and renormalization of loops (no-scale universe) py, (k) = p : 3 ( kk )
NLT \ANT

—evaluate with cutoft:

A E\? | E\? k
Pl—loop — le\ ( > (—) P+ C?mte <—> P11 + subleading in k—

7 k—NL ENL kNL NL

(%))
P/ k
— divergence (we extrapolated the equations where they were not valid anymore)

— we need to add effect of stress tensor 7;; O 0356

2
k /A
Py . =c|— ) Piu ,choose ¢s=—¢ + Cs finite

kn kN,
finite k ’ . . k
—> Pi_100p + P11, ¢, = Cs, fini c —— | P;; + subleading in ——
ENL NL

—we just re-derived renormalization

—after renormalization, result 1s finite and small for . <1



....lots of work ....



Galaxy Statistics

Senatore 1406
with Lewandowsky et al 1512
with Perko et al. 1610



Galaxies in the EFTofLLSS Senatore 1406

* On galaxies, a long history before us, summarized by McDonald, Roy 2010 .

— Senatore 1406 provided first complete parametrization.

* Nature of Galaxies 1s very complicated

ngal(f) — fvery complicated ({H7 Qma s e 7m67 gew) c e 7/0(517)}]@3,5*5 light Cone)



Galaxies 1n the EFTofLLSS Senatore 1406

ngal(x) — fvery complicated ({H7 QW? ooy Mey Jews - - -y p(x)}past light cone)
At long wavelengths \U/ Taylor Expansion

(%)gaw (:U)N/tdt’ :c(t,t’) <%p) (fﬂ,t’)+..._

e all terms allowed by symmetries Qf ALARY A
[, TiNe
e all physical effects included

—e.g. assembly bias

CO L LAPSING
° MATTER \

()0 (5),0)

= Z Coeff,, - (matter correlation function)




It 1s familiar in dielectric E&M

 Polarizability:

Bw) = vw)Bw) = Bt)= / Aty (t — ) E(t)

e and 1n fact, also the EFT of Non-Relativistic binaries Goldberger and Rothstein 2004

1s non-local 1n time.



Consequences Of non_locallty ln tlme with Carrasco, Foreman, Green 1310

; Senatore 1406
* The EFT 1s non-local in time  —> (7, (Z,))1ong fixed ~ / dt' K(t, 1) 6p(Za, ') + . .

e Perturbative Structure has a decoupled structure
op(x, ') = D(t)op(Z)Y + D(H')*op(7)* + ..
* A few coefficients for each tcounterterm:
S (7 ) )tong e ~ / it K(t,¢) [D)sp(@)® + D)?5p() +..] =
~ ¢ (t) 6p(Z) Y + co(t) 6p(2)P 4 ...

e where

ci(t) = / dt' K(t,t") D(t)’

Time-Local QFT: ¢ (t) [0p(Z) + 0p(2)P + .. ]
Non-Time-Local QFT: ¢1(t) 6p(2)V) + co(t)op(2)? + . ..

e Difference:

e More terms, but not a disaster



Baryonic etfects

* When stars explode, baryons behave differently than dark matter

credit: Millenium Simulation,
| Springel et al. (2005)

* They cannot be reliably simulated due to large range of scales



e Idea for EFT for dark matter:

Baryons

— Dark Matter moves 1/knp, ~ 10 Mpc

* —> an effective fluid-like system with mean free path ~ 1 [knt,

e Baryons heat due to star formation, but move t

— Universe with CDM+Baryons —> EFTof]

1.00

1€ Same.

LSS with 2 specie

02 04 06 08
k [h Mpc™']



Baryons
 EFT Equations:

Continuity: ps + 3Hps +a 10wl =0 ,

i_J
T T

Momentum: 7’ + 4H7" + a_lé'j ( ) +a ' p0;® = +a Tty — a_lﬁchij :

i+ 4HT) + a0, ( ) +a tpp0i® = —a 'y — a_lf)‘jng .



Baryons
 EFT Equations:

Continuity: ps + 3Hps +a 10wl =0 ,

| | i
Momentum: 7’ + 4Hn! +a~'0; (Wcﬂc) +a ' p.0;® a
Pe
% i 19 Wéﬂj 1 aF —1qa 1]
m, +4Hm, +a 0, p +a pp0; P = a 0T .
b

dynamical friction effective force

e Counterterms: \

no derivative: marginal
operator



A relevant operator

* Dynamical friction term 1s indeed needed for renormalization of the theory, 1.e. it 1s

generated.

* Dynamical friction 1s a relevant operator: 1.e. it cannot be treated perturbatively: it is an

essential part of the linear equations:

/ a
(1.25§1)"((1., k) + (2 + (15((()1)) (1.551)'((1,, k) = / (1015}1),(01- k) .
a

—due to the time-translation breaking and actually even non-locality, very very very

very very very hard to handle consistently.

e we can make some ZUCSSCS

e Luckily: it only affect the decaying mode of the isocurvature, which is very very very

very very small.



Predictions for CMB Lensing

* Baryon corrections are detectable in next CMB S-4 experiments. But we can predict it:
1.2 ———/——oa ——/ A — —— — —— —— —

EFT

/ I CMB-S4
projected errors

" high-k approx. error
three-loop error

500 1000




Bispectrum at one loop

with D’ Amico, Donath, Lewandowski, Zhang 2206



Bispectrum

e The tree level bispectrum had been already used for cosmological parameter analysis in

with Guido D’ Amico, Jerome Gleyzes,
Nickolas Kockron, Dida Markovic, Pierre Zhang, Florian Beutler, Hector Gill-Marin 1909.05271

Philcox, Ivanov 2112

e ~10% 1mprovement on A,

* Time to move to one-loop:

—Large effort:

e data analysis with D’ Amico, Donath, Lewandowski, Zhang 2206

e theory model  with D’Amico, Donath, Lewandowski, Zhang 2211

° tneory iIltGgI'atiOn with Anastasiou, Braganca, Zheng 2212



e Main result:

* Improvements:

*30% on O g
e 18% on h
*13% on (1,

e Compatible with Planck

—No tensions
e Often Planck Comparable

P

with D’ Amico, Donath, Lewandowski, Zhang 2206

Data Analysis

B P, + B, + BUree

B Planck

0.72 I - N/
0.70 | - / |
_: 0.68 — — {' "n .'l|'
- - “' : a" |
0.66 [/
\ | )
0.64 |- h . / [/ "::'-.
= = J.-f’// \ = \\.k
1.0 —— A/
.v" ',"u ’W .".|
0.9 -+ I'{
o0 ‘.',"' I '.‘ "'n
b o|" I “5 |'.
0.8 T [/ A
y ] . \
| \ \
0.7 - - - 4 ." || !
1 1 1 1 1 _4;// -/ L el
0.34 0.38 0.65 0.70 0.7 0.8 0.9 1.0
h Og




The Ory MO d el with D’ Amico, Donath, Lewandowski, Zhang 2206

e We add all the relevant biases (4th order) and counterterms (2nd order):

P 'bi], Py'[bi,bs,bs], Pyy'[b1,b2,bs]
211[b1 bzab"] 5 gzhl(m[blabZ b3 bs bS] 411[b1 bll] )
B;‘;;[bl,bg,bg;] ) gzhl(l)[bla b2 b3 b bGabSabIO]

P{éh,d [bla Ch,15Cr,15 Cru,15 C‘;Tv,3] ) P27‘2h e[cl ) Cgta Cg ]
Bg’ghllf(ll)’d [bl b‘Z bSa Ch,1,Cx,1,Crv,1, Crrv 3] ;th © (I)[bla C?ta 02 9 {CSt} =4,..., ] )
.Ilh] “ [bl {Ch z}z 1,...,5,Cr,1,Cr 5, {Cm, _7}_7 | J— ] 52’126[ (222) 05222): (222)]

* [R-resummation:
 For the power spectrum, we use the correct and controlled IR-resummation.
* For the bispectrum, we use the wiggle/no-wiggle approximation  Ivanov and Sibiryakov 2018
Byt = K7™ (ky; 2) K7™ (ki 2) K5™ (k1. ka3 2) Puo (k1) Puo (ko) + 2 perms. |
Pro(k) = Puy(k) + (1 4+ k232 e Ztet Py (k)

e For the loop, we justuse INpo(k) = Paw(k) + e et Py(k), in the non-

integrated power spectra



Derivation of theory model

with D’ Amico, Donath, Lewandowski, Zhang
2211



with D’ Amico, Donath, Lewandowski, Zhang

Derivation of theory model »mu

e Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.

e Renormalization of velocity

 In the EFTOILSS, the velocity 1s a composite operator @@(g;) _ " () , SO, 1t

needs to be renormalized:

vlp=0v'+ 0%,

e Under a diffeomorphisms:

vt —=v'+x = O, is ascalar

* In redshift space, we have local product of velocities, which need to be renormalized

but have non-trivial transformations under diff.s:
V'R = [V )R + [0 ]RX + [V ]RX 4 XX

* To achieve this, one can do: (so must include products vt - ij )

' r = [V'|g[V]R + Oi‘é ,  where Oi@ is a scalar



with D’ Amico, Donath, Lewandowski, Zhang

Derivation of theory model »mu

e Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.
* Non-local-contributing counterterm.
* This 1s a normal effect, just strange-looking in the EFTofLLSS context.

e Normally, counterterms are local, but, contributing through non-local Green'’s

functions, they contribute non-locally.



with D’ Amico, Donath, Lewandowski, Zhang

Derivation of theory model »mu

e Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.

* Non-local-contributing counterterm.

1
 In the EFToOILSS, the Green’s function 1s simple: ﬁ

1

2
(92 0 Olocal ~ Olocal

e Counterterms typically come with 0°Olyeal =  Ocounter
e result almost trivial

e But at second order, and for velocity fields, contracted along the line of sight, the

derivative do not cancel, so we get

A

Scounter (£) ~ 2210l (T) ~ 2

! 73j 8Z aj(;zk am Olocal

i 21 01050k0m (OO - 010m -
v 2000 (Sla(@) X e ()

e This 1s truly non-locally contributing, truly non-trivial.

* We check that all these terms are needed and sufficient for renormalization



Evaluational/Computational Challenge

with Anastasiou, Braganca, Zheng 2212



The best approach so far

Simonovic, Baldauf, Zaldarriaga,
Carrasco, Kollmeier 2018

* Nice trick for fast evaluation of the loops integrals

Wavelength A [h~! Mpc]
104 1000 100 10 1

* The power spectrum is a numerically computed function ™~ 7T o e o
@ - ” e

Tegmark et al. 2002 1

104 |

* Decompose linear power spectrum

Pulh) = 3 e e

n

1000 /

T
E »' = ]
100 F ﬁi -
—P
-3

@ SDSS galaxies

0 # Cluster abundance
E = Weak lensing

Current power spectrum P(k) [(h-! Mpc)3]

A Lyman Alpha Forest Hii‘x i

* Loop can be evaluated analytically

l E | & llllll L endel Xllll L il l“ll A AL llllll AL AN
0.001 0.01 0.1 1 10
Wavenumber k [h/Mpc]

Pl—loop /K q, Pll(k _ Q> P11(C]) —

= 3 ot ([ K@ R B 502) = 37 0, M0

ni,n9 9 ni,n2
—using quantum field theory techniques

— M, n, 18 cosmology independent = so computed once



Computational Challenge _ phitcox. vanov. Cabass.

Simonovic, Zaldarriaga 2022

e Two difficulties:

Pl—loop(k) = [K(Cﬁ E) Pn(/f — CI) Pll(Q) —

= 3 e ([ RGR 9 52) = 5 0,0
q

ni,ng ni,n2

e integrals are complicated due to fractional, complex exponents

e many functions needed, the matrix M,,,n,n, for bispectrum is about 50Gb, so,

~1mpossible to load on CPT for data analysis

e In order to ameliorate (solve) these 1ssues, we use a different basis of functions.



with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

(k/K3)’
(k2_k2 k)Q 3’

pea

e Use as basis:

f(k27 k?mak? k%\h i? ]) —

e With just 16 functions:

104§ """"" . E
5000+ -~ |

1000 L .

P(k)

0.00l  0.005 0010 0050 0.100  0.500
k [h/Mpc]



with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

 This basis 1s equivalent to massive propagators to integer powers

49
! = kUV |
2\ (2 ok —ik2) (R =2 ik2y)
1 | k4pea peak — 1 UV peak 1
UuVv
k%\/ _ i/2 N i/2
(k ? — Kpeak ~ ““%V) (k2 = Kpear + 1 /f%v) B2 — k2o — i kGy K2 — k2 tikgy

e So, each basis function:

B2 k2 k2 g2 2 fon | Fn
f( peak> UV7Z7J Z <(k2_|_M)n (k2_|_M>|<)n



with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

 This basis 1s equivalent to massive propagators to integer powers
47
1 k UVv

(1 : <k2—£geak>2>’ (k2 — B2y — ik ) (B2 = R+ iRy )

ki i/2 i/2
2 1.9 Y 2 2 ) \ k2 k2/ kz\Jrk k:2/+k
(K2 = K2 — ik ) (K2 = 2 + ik ) peak — ¢ y peak T

Complex-Mass propagator

e So, each basis function:

B2 k2 k2 g2 2 fon | Fn
f( peak> UV7Z7] Z ((kQ_I_M)n (k2_|_M>|<)n



with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

 We end up with integral like this:
(kl . q)2n1 q2n2 (kQ _I_ q)2n3

L(ni,di,n9,da,n3,d :/
(01, d1,ma2, da, 3, ds) o (k1 —@q)? + M) (q? + M2)%((ka + q)? + Ms)ds

e with integer exponents.
 First we manipulate the numerator to reduce to:

1
T(d17 d27 d3) — /
q

(k1 — @)2 + M1)7 (g% + Mo) % ((ks + @) + Mz)%

* Then, by integration by parts, we find (i1.e. QCD teaches us how to) recursion relations

0
— - (qut(d1,d2,d3)) =0
| Gt . ds)

— (3 — d1223)6 + dlklsf—\l_ —+ dg(kzs)ﬁ —+ 2M2d2§_\i_ — dlf_\i_? — dgé:g_? = (

e relating same integrals with raised or lowered the exponents (easy terminate due to

integer exponents).



with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

* We end up to three master integrals:

* Tadpole: 43 2\n
q (p;)
Tad(M;, n, d) = / 4P
T (pi -+ M])
e Bubble: 73
q 1
Bmas er kzaM 7M —
t ( 1 2) /WS/Q (q2 + Ml)(|k - q|2 4 M2)

e Triangle:

Tmaster(k%a k%, kga M17M27 M3) —

/ d’ 1
w3/2 (¢% + M)(|k1 —

OO

Tw(f de




with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

e The master integrals are evaluated with Feynman parameters, but with great care of

branch cut crossing, which happens because of complex masses.
e Bubble Master:
2 VT
Bmaster(k ’ M17 MQ) — 71[1()% (A(]-7 mi, m2)) — 1Og (A(07 mi, mQ))
— 2miH (Im A(1, mq1,m2))H(—Im A0, m1,ms3))],
A(O,ml,mg) = 2./mo + i(ml — Mo + 1) :

A(l,ml,mg) = 2v/m1 +i(m1 — Mo — 1),
m1 = Mi/k* and mo = M>y/k?

* Triangle Master:

=1
V24 —T\/To—2—
JT arctan(\/xo_er\/x_z_)

=
V| R2] VIO — Z4/Tp — Z—

Ent(R27 Ry B— s .CC()) — S(Z—I—7 _Z—)

* Very simple expressions with simple rule for branch cut crossing.



Re Sult Of EV alu atl on 2\7;1;}21 Anastasiou, Braganca, Zheng

e All automatically coded up.

e For BOSS analysis, evaluation of matrix 1s 2.5CPU hours and 800 Mb storage, very fast

matrix contractions.

e Accuracy with 16 functions:

5 x 106 ————— N \

— 1x10° AT, 7 ‘;
S 5x105 : :
3 I o :
ks 4 —— Blree _
L 1X105§ g 3 . .
R 5y 104L B1_100p analytical ¥
. Bi_j00p numerical |

§.4 OOI_ —t | | |
T 0.00;
= 002 _
9 —0.03 . | 9 | R

0.005 0.010 0.050 0.100 0.500

k [h/Mpc]



Back to data-analysis:
Pipeline Validation



e Green: biased.
e Why?
—Priors centered on zero?
e Grey: biased
—Bug in pipeline?
* Test by reducing covar.
* Red: non-biased
* It must be phase space projection
* But the grey line offers

—an honest measurement of it.

0.05

0.00

Ah/h

—0.05

Aog/og

with D’ Amico, Donath, Lewandowski, Zhang 2206

Measuring and fixing phase space

* We consider synthetic data, 1.e. data made out of the model, and analyze them:

B 4 skies
P 4 skies
B 4 skies
B 4 skies

» Viaskies

, Viaskies, Ccentered EFT prior
, Vaskies, adjust.

» ~ 100 Vyskies

0.1 -0.05 0.00

Ah/h

1 1 ]
0.05 —0.2 -0.1 0.0 0.1

Aog/og




with D’ Amico, Donath, Lewandowski, Zhang 2206

Measuring and fixing phase space

e We add:
by ()
m
In PR P8 = 48 ( — ) +32( = | +48( — ) .
2 0.31 0.68
B 4 skies, Vasiies
I 4 skies, Vyskies, Centered EFT prior
B 4 skies, Viskies, adjust.
B 4 skies, ~100V4skies
Oproj /Ustat Qm h o8 Wedm
1 sky, ~ 100 Vigy 0.1 | -0.14 | -0.21 | -0.2
1 sky, Visky, adjust. 0.13 | 0.06 | 0.04 | 0.15 005
4 skies, Vjgkies, adjust. 0.1 0. -0.05 0.07 < / \
= 0.00 /
<l |
—0.05
. 0.1 i |
* N0 more proj. effect. Ny
s T P
<6]° —-0.1 : / \
0.2 _
1 j 1 /I 1 \\{ 1

-0.1

0.0

AQM/Qm

0.1 -0.05 0.00 0.05

Ah/h

—0.2-0.1 0.0 0.1
Aog/og



S Cale CUt from NNLO with D’ Amico, Donath, Lewandowski, Zhang 2206

* We can estimate the without the use of simulations, by adding NNLO terms,

kmax
and seeing when they make a difference on the posteriors.

1 k4 1 k4
Punvo(k, i) = —c, 4b1,u L Pi1(k) + —c, 6b1,u L Pi1(k),
4 NL.R 4 NL.R
r.h rh/ 77 A k4
Brwvo(kn, k. ks, 1, 6) = 2exwioa K5 (k. ko 2) KT (ks 2) fp 7 — Pua (k1) Poa (k)
NL,R
rhri” A rhii? . A (’1‘2 —I_’L‘S)
+ enNpo2 8 (k13 2) K7 (Ros 2) Pry(ky) Pri(ko) f pisks 57974 [ 2A1 kQ(A H1 +k2/t2)
Ak k ANLR
+ 2f iy proprsky koks (k3 + AQ)W + perm. , (

e For our kmax , we find the following shifts, which are ok:

Aghift /Ostat Qum h o8 Wedm | In(1010Ay) S8

Py, + Bg: base - w/ NNLO -0.03 | -0.09 | -0.03 -0.1 0.05 -0.04




S C ale— CUt fr()m Simul ations with D’ Amico, Donath, Lewandowski, Zhang 2206

e N-series B Nseries Py
B Nseries P; + By
° Volume ~8() BOSS B Nseries P; + Bo + B>

e safely within O data/ 3

* After phase-space correction 0.05

0.00

Ah/h

—0.05

0.2

Aog/og

0.0

-0.2

—0.05 0.00 0.05
Ah/h




S C ale— CUt fr()m Simul ations with D’ Amico, Donath, Lewandowski, Zhang 2206

 Patchy:

B Patchy Py
B Patchy P; + By
B Patchy Py + Bo + B>

e Volume ~2000 BOSS
e safely within O gty / 3

e After phase-space correction 0.10

0.05

Ah/h

0.00

—-0.05




BOSS data



e Main result:

* Improvements:

*30% on O g
e 18% on h
e 13% on §2,,

e Compatible with Planck

—no tensions

e Remarkable consistency

—of observables

Data Analysis
with D’ Amico, Donath, Lewandowski, Zhang 2206

P
B P, + B, + BUree

B Planck

0.72 +
0.70 |- . |
v" v ' !
L 0.68 - “l '."||
- - "' | o‘ |
0.66 / ', |.
0.64 - - - / '. \
——— N
1.0 - — ",r\"r[
0.9 -+ - ‘.o""" II ".‘.
0 0'.' I '.0 "i!
o} I .o. \
0.8 -T- — I Vo
y ] | \ \
0.7 T B 7 A l', ll '.“-.
I I 1 1 1 J/ ‘ -/ L \L el
0.30 0.34 0.38 0.65 0.70 0.7 0.8 0.9 1.0



Direct Measurement of
formation time of galaxies

with Donath and Lewandowski 2307



Galaxies in the EFTOfLLSS  srore 1496 e

ngal(x) — fvery complicated ({H7 QW? ooy Mey Jews - - -y p(x)}past light cone)
At long wavelengths \U/ Taylor Expansion

(%)gaw (:U)N/tdt’ :c(t,t’) <%p) (fﬂ,t’)+..._

e all terms allowed by symmetries Qf ALARY A
[, TiNe
e all physical effects included

—e.g. assembly bias

CO L LAPSING
° MATTER \

()0 (5),0)

= Z Coeff,, - (matter correlation function)




Consequences of non-locality 1n time

* This means that one does not get the same terms as in the local-in-time expansion

e [f we could measure one of these terms, we could measure that Galaxies take an
Hubble time to form. We have never measured this: we take pictures of different
galaxies at different stages of their evolution. But we have never seen a galaxy form

in an Hubble time.

—This would be the first direct evidence that the universe lasted an Hubble time.

* So, detecting a non-local-in-time bias would allow us to measure that, and from the

size, the formation time. Unfortunately, so far, not yet.



Consequences of non-locality 1n time

* Mathematics again:

e non-local 1n time:




Consequences of non-locality 1n time

n—m-+1

n — n) /= n (n)
50 (#1) = Y o, () OD (@ 1), 0@ Y > conal)Cs

Om

* it turns out that up to 4th order, the two basis of operators were identical.

e but at Sth order they are not!

— out of 29 independent operators, 3 cannot be written as local in time ones.

e = By looking at, eg,
(85 (81)85,) (#2)85,) (#3)05,) (£4)05,) (5)d4,) (Z6))

e we can detect these biases, and, from their size, determine:

—the order of magnitude of the formation time of galaxies

—direct evidence that the universe lasted 13 Billion years



Consequences of non-locality 1n time

e more on time-non-locality:

* if formation time is fast, 1 /w, we can Taylor expand the Kernels:

H
c0,.0(t) % 0, (0) (14 90,007 + ... )

* so these terms would be suppressed, and we could therefore determine a fast

formation time.



Peeking into the next Decade
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Next Decade

e After validating our technique against the MCMC’s on BOSS data, we Fisher
forecast for DESI and Megamapper

* Prediction of one-loop Power Spectrum and Bispectrum

 We introduce a “perturbativity prior’: impose expected size and scaling of loop

200 ——

150 |
I (PlL)2

Tree

| = MCMC P}~

100
I U data,CMASS

50 | | = Expected P9,

| = Prior favored PY;

e Also a “galaxy formation prior’, 0.3 in each EFT-parameter



Results: Non-Gaussianities

BOSS:o() | fat | Jut | Ja-
P+ Briee 37 397 142
P+B 23 253 67
P+ B-+p.p. 17 228 62
P+B+p.p.+g.p. 15 163 49

DESL o() | flir | Jax | Ja™
P+ Bryee 3.61 142 71.5
P+B 3.46 114 30.2
P+B+p.p. 3.26 91.5 27.0
P+B+p.p.+g.p. | 3.19 | 77.0 21.8

MMo: o() | f | Jat | S
P+ Brree 0.29 | 234 8.7
P+B 0.27 | 17.7 4.6
P+ B+p.p. 0.26 | 16.0 4.2
P+B+p.p.+g.p. 0.26 12.6 3.4

e Just using perturbativity prior, potentially a factor of 20, 3., 6 over Planck!!



Results: Curvature and Neutrinos

DESI: o(-) h In(10'1°A;)| Q. N / Qu
P+B 0.004 | 0.035 | 0.002 | 0.0 | 0.013
P + B+p.p. 0.004 | 0.032 0.002 | 0.008 | 0.012
P+B+p.p.+g.p. | 0.004 0.025 0.002 | 0.007\]_0.009 |

MMo: o(-) h In(10*°A,) Q.. N /m
P+B 0.002 0.0052 0.0003 0.002/ 0.0015
P+ B+pp. | 0002 | 0.0046 | 0.0003 | 0.00% | 0.0012
P+B+pp.+gp. | 0.002 | 0.0044 | 0.0003 | 0.001\] 0.0011
N~

e Just using perturbativity prior, potentially factor of !
e Important for the landscape of string theory.

* Neutrinos: guaranteed evidence/detection:

20 DESI, 140 MegaMapper



Where can we make better?

e Shot noise and EFT-parameters:

o(+) h In(1010Ay) Qo Ns 11\?f ;Ci l%rﬁh
P+B 0.0042 0.020 0.0022 | 0.010 3.5 114 30
P+ B+ g.p.: 0.0042 0.018 0.0022 | 0.009 3.4 83 23
P + B : bias fixed | 0.0037 0.010 0.0016 | 0.004 2.0 21 11
P+ B:ny —» o 0.0035 0.011 0.0009 | 0.005 1.7 67 17
o(+) h In(1010 Ay) Qo Ns 11\?f 1%% ﬁ‘ﬁh
P+B 0.0021 0.0047 0.00034 0.0017 0.27 18 4.6
P+ B+ g.p.: 0.0020 0.0045 0.00033 0.016 0.26 13 3.6
P + B : bias fixed 0.0016 0.0034 0.00021 0.0010 0.17 3.6 1.7
P+ B :ny, = o 0.00019 0.00045 0.000029 | 0.00017 0.11 5.4 1.5




Summary

e After the initial, successful, application to BOSS data:
—measurement of cosmological parameters
—new method to measure Hubble
—perhaps fixing tension
* the EFTOfLSS 1s starting to look ahead to
—higher-order and higher-n point functions
—enlightening what next surveys could do, and how to design them

—learning about some astrophysics, qualitative facts on the universe



Consequences of non-locality 1n time

* Nice recursion relations for these operators:

n—m-+1 N\ at+m—1
[Om(fﬂ(fatat/)at/)](n) — Z (l;((tt))> Cg:)@,a(fv t)

°. a=1

n—m-+1

— O(n) Z C(") 7

equal-time completeness relation
flurd recursion

n—1
S Cona@n =3 0.C) (F. )0, 1) ",

n—a—m+1 02

C’)gzm) — Cg:,?,l

\

e Easy higher order: Ot = C(m+1) C(m—l—l)
= \ N
O+ = @g::;)  An Cg:f) @(m+2)

N N A}



