

Studying jet shower modifications in the quark-gluon plasma using the Lund tree (CMS)

Yi Chen (MIT) Lund plane workshop, Jul 4, 2023

Jets in QGP

Setting the stage for substructure measurements

Heavy-ions and the QGP

Energy up to
$$\sqrt{s_{NN}} = 5.44 \text{ TeV (XeXe)}$$

$$\sqrt{s_{NN}} = 5.36 \text{ TeV (PbPb)}$$

LHC, CERN, Geneva

RHIC, BNL, New York

Jets inside QGP

What happens?

Key difference to no-QGP case: space-time structure of jet evolution now matters

Example jets in collisions

Jets quench

"Nuclear modification factor":

 $\frac{\sigma \text{ with QGP (PbPb)}}{\sigma \text{ without QGP (reference)}} \sim 0.6-0.7$

A lot fewer jets

"Jet quenching"

Radial distribution

Energy in jets are concentrated in a small area on average

Larger tail observed in jets in PbPb

Energy is pushed away

Radial distribution

Radial distribution

Energy in jets are concentrated in a small area on average

Larger tail observed in jets in PbPb

Energy is pushed away

Particle distribution

Photon p_T ~ initial q/g p_T

$$\xi_T = -\ln \frac{|I|}{|I|}$$

In PbPb we see a lot more soft particles in the jets

Mapping to (primary) Lund plane

Charge given by organizers

(Earlier) measurements by CMS in HI: $z_g \& m_g/p_T$

PRL 120, 142302 (2018) JHEP 10 (2018) 161

Recap: Jet declustering

Recluster constituents with recombination algorithms (C/A, anti-k_T, ...)

We can trace the declustering history and define observables

Recap: soft drop / mMDT

$$z_g \equiv \frac{p_{T,2}}{p_{T,1} + p_{T,2}} > z_{\text{CUt}} \left(\frac{\Delta R}{R_0}\right)^{\beta}$$

Above line: accepted by grooming

Below line: groomed away

The grooming setting

z_g and m_g/p_T

$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

$$m_g = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

Normalize by full jet p_T to reduce dependence on jet spectrum (among other things)

Analysis in a nutshell

Jets clustered with anti- k_T R = 0.4, particle flow objects, background-subtracted with constituent subtraction

Calibrate back to gen jet p_T

Perform soft drop to identify the splitting of interest

Discard if opening angle $\Delta R < 0.1$ (c.f. CMS hadronic calorimeter cell size 0.087 x 0.087)

Cuts away low mass region essentially

Result: pp

Generally up to 10-20% disagreement by generators

Comparing to e^+e^-

Similar trend in e^+e^- compared to LHC results Comparison to PYTHIA and HERWIG also similar

Disagreement in LHC can be improved by e^+e^- input

What we see in PbPb

Distribution is steeper in PbPb

More imbalanced configurations

One possibility: subjet formed from pushed out energy

Qualitatively reproduced by calculations/generators

Groomed away energy

How much p_T is left after grooming

Larger amount of energy groomed away in PbPb

Mostly reproduced by MC generator

More differential look would be useful

The second grooming setting

Groomed jet mass

$$(z_{cut}, \beta) = (0.5, 1.5)$$

Stronger grooming at large angles => nothing

$$(z_{cut}, \beta) = (0.1, 0.0)$$

Flat grooming regardless of angle => some hint of larger mass

As a function of jet p_T

Higher jet momentum

Effect becomes progressively smaller with high p_T

Interplay between QGP scale and jet scale?

Putting Into Context

Putting them together

Adding also other experiments*

Putting them together

Selection bias in jets

Jet measurements always mix different quenchiness Makes interpretation less straightforward!

Reducing bias: one possibility

Inclusive jets
Need high enough energy
cut for many reasons
(triggers, etc)

Tagged jet — allows a tag of initial energy, and also lower jet energy cut

Concluding Remarks

Concluding remarks

- Lund-plane-based observables are powerful tools to look inside jets in heavy-ion environment
- Isolate interesting regions of phase space for further studies
- Good synergy comparing different collision systems
- Important to gain a handle on selection bias effects for a fuller picture

Backup Slides Ahead

