Studying jet shower modifications in the quark-gluon plasma using the Lund tree (CMS)

Yi Chen (MIT)
Lund plane workshop, Jul 4, 2023

Jets in QGP

Setting the stage for substructure measurements

Heavy-ions and the QGP

e.g. $\mathrm{Pb} / \mathrm{Au} / \mathrm{Xe} / \ldots$ ion

LHC, CERN, Geneva

RHIC, BNL, New York

Jets inside QGP

What happens?
Key difference to no-QGP case:
space-time structure of jet evolution now matters

Example jets in collisions

Jets quench

Radial distribution

Radial distribution

Radial distribution

Particle distribution

Hard \longleftrightarrow Soft

Particle in jet

Photon $p_{T} \sim$ initial $q / g p_{T}$

$$
\xi_{T}=-\ln \xrightarrow{|\longrightarrow|}
$$

In PbPb we see a lot more soft particles in the jets

Mapping to (primary) Lund plane

With QGP effects

"Hurricane": large angle soft clusters

Charge given
by organizers

> (Earlier) measurements by CMS in $\mathrm{HI}: z_{g} \& m_{g} / p_{T}$

PRL 120, 142302 (2018) JHEP 10 (2018) 161

Recap: Jet declustering

Recluster constituents with recombination algortihms (C/A, anti-kT, ...)

We can trace the declustering history and define observables

Recap: soft drop / mMDT

$$
z_{g} \equiv \frac{p_{T, 2}}{p_{T, 1}+p_{T, 2}}>z_{\mathrm{cut}}\left(\frac{\Delta R}{R_{0}}\right)^{\beta}
$$

Above line: accepted by grooming

Below line: groomed away

The grooming setting

z_{g} and m_{g} / p_{T}

$$
z_{g}=\frac{\min \left(p_{T, 1}, p_{T, 2}\right)}{p_{T, 1}+p_{T, 2}}
$$

$$
m_{g}=\sqrt{\left(E_{1}+E_{2}\right)^{2}-\left(\overrightarrow{p_{1}}+\overrightarrow{p_{2}}\right)^{2}}
$$

Normalize by full jet p_{T} to reduce dependence on jet spectrum (among other things)

Analysis in a nutshell

Jets clustered with anti- $k_{T} R=0.4$, particle flow objects, background-subtracted with constituent subtraction

Calibrate back to gen jet p_{T} \downarrow
Perform soft drop to identify the splitting of interest \downarrow
Discard if opening angle $\Delta R<0.1$ (c.f. CMS hadronic calorimeter cell size 0.087×0.087)

Cuts away low mass region essentially

Result: pp

Generally up to 10-20\% disagreement by generators

Comparing to $e^{+} e^{-}$

Similar trend in $e^{+} e^{-}$compared to LHC results
Comparison to PYTHIA and HERWIG also similar
Disagreement in LHC can be improved by $e^{+} e^{-}$input

What we see in PbPb

> Distribution is steeper in PbPb

More imbalanced configurations

One possibility: subjet formed from pushed out energy

Qualitatively reproduced by calculations/generators

Groomed away energy

How much p_{T} is left after grooming

Larger amount of energy groomed away in PbPb

Mostly reproduced by MC generator

More differential look would be useful

The second grooming setting

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{g}} \overbrace{\text { Harder }} \quad z_{\mathrm{g}} \equiv \frac{p_{T, 2}}{p_{T, 1}+p_{T, 2}}>z_{\mathrm{Cut}}\left(\frac{\Delta R}{R_{0}}\right)_{\text {Jet }}^{\beta} \\
& \text { Independent of angle } \\
& \text { Same overall grooming } \\
& \text { strength }
\end{aligned}
$$

Groomed jet mass

$\left(Z_{\text {cut }}, \beta\right)=(0.5,1.5)$
Stronger grooming at large angles $=>$ nothing

$\left(Z_{\text {cut }}, \beta\right)=(0.1,0.0)$
Flat grooming regardless of angle => some hint of larger mass

As a function of jet p_{T}

Effect becomes progressively smaller with high p_{T}

Interplay between QGP scale and jet scale?

Putting Into Context

Putting them together

Adding also other experiments*

Putting them together

Qualitatively some regions stand out (from 1D)

Selection bias in jets

Jet measurements always mix different quenchiness
Makes interpretation less straightforward!

Reducing bias: one possibility

Inclusive jets
Need high enough energy cut for many reasons (triggers, etc)

Tagged jet - allows a tag of initial energy, and also lower jet energy cut

Concluding Remarks

Concluding remarks

- Lund-plane-based observables are powerful tools to look inside jets in heavy-ion environment
- Isolate interesting regions of phase space for further studies
- Good synergy comparing different collision systems
- Important to gain a handle on selection bias effects for a fuller picture

Backup Slides Ahead

