

Boosted W tagging with Lund jet planes

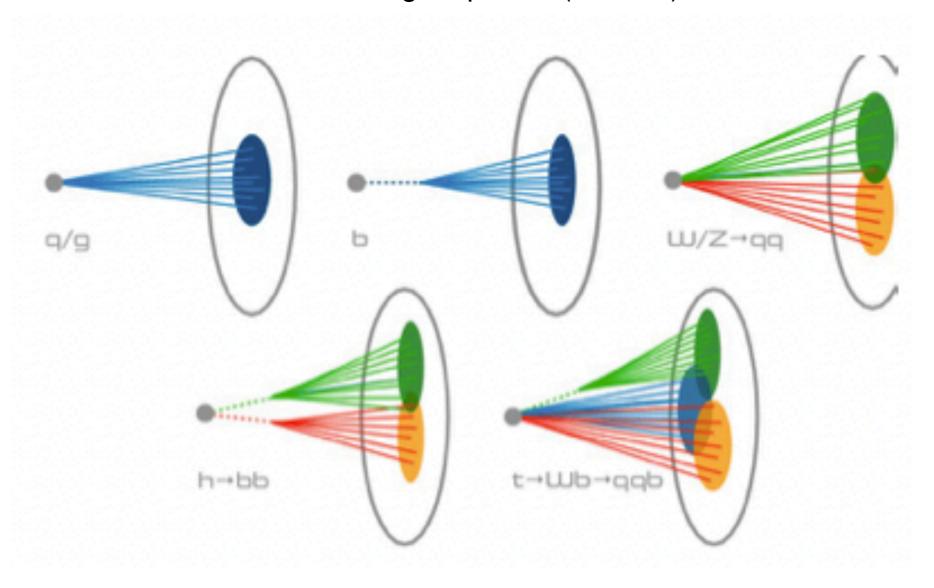
ATL-PHYS-PUB-2023-017

Jad M. Sardain on behalf of the ATLAS Collaboration

First Lund Jet Plane Institute, July 3-7 2023

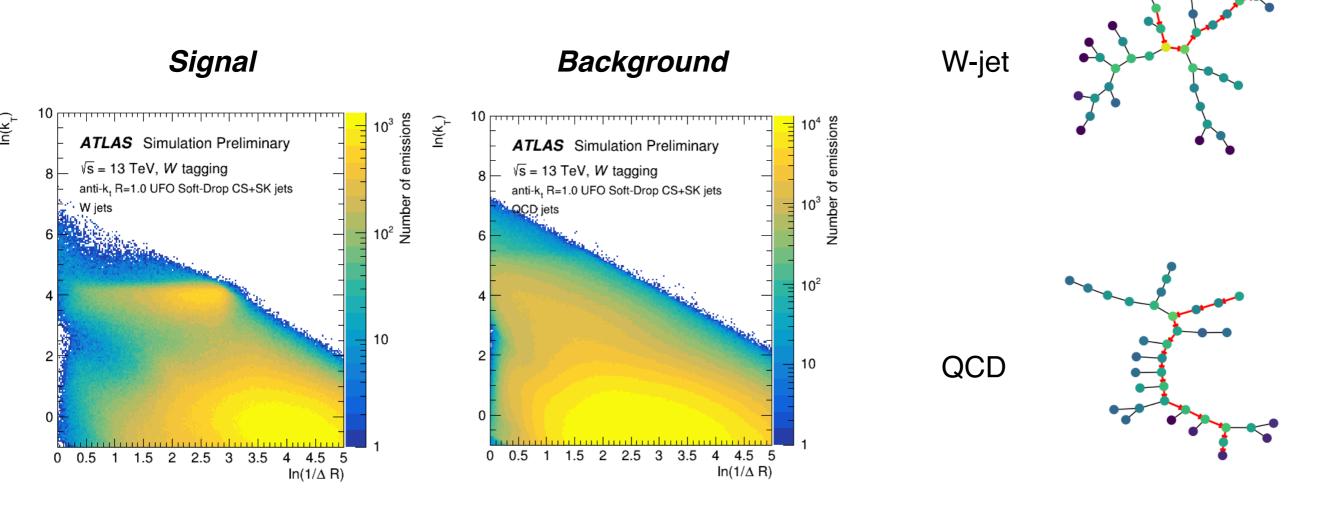
Hadronic jet tagging: overview

- Heavy states with large momentum will produce multi-prong topology
- Techniques (ML or not) developed in the last 10 years to distinguish the various jet topologies
- Various approaches include: Combine various high-level variables
 - Use low-level constituents
 - Jet images
 - Jet clustering sequence (this talk)



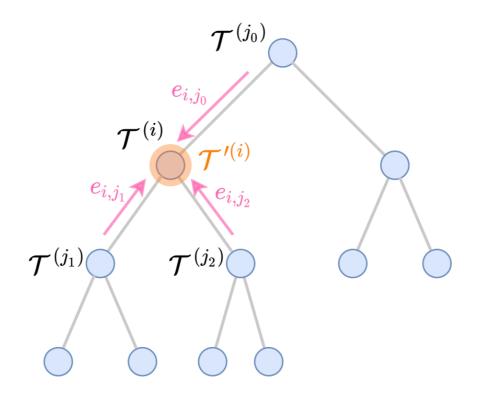
Jet tagging using Lund plane and ML

- The Lund planes for the W, top and QCD jets already looks quite different
 - Convolutional NN used for identification
 - Results not much better than CNN directly on jet images
- However, the Lund plane has much more information coming from the sequence that produced it
 - Use GNN where each node has 3 vars:
 - z momentum fraction of the branching.
 - k_t transverse momentum,
 - Δ emission angle
 - Number of tracks per jet as a global feature to help classification



LundNet

- Graph neural network by Frédéric Dreyer used to tag Lund planes when represented as graphs. It is currently the state of the art of Lund tagging and inspired by ParticleNet <u>arXiv:2012.08526v2 [hep-ph]</u>
- It uses the EdgeConv layer. In summary, for a node x_i , we construct a small fully connected neural network. The input is $x_j x_i = [k_{t,j} k_{t,i}, \Delta_j \Delta_i, z_j z_i]^T$ concatenated with x_i , where x_j is just a node connected to x_i . The output is the edge features, e.
- The EdgeConv block repeats this operation for every node connected to x_i . Then the edge features are aggregated (based on taking the mean) to produce the new node features for x_i .
- LundNet-3 and LundNet-5 are virtually the same model, their difference is the number of Lund variables each node has at the beginning. In our analysis, we only consider LundNet-3.



arXiv:2012.08526v2 [hep-ph]

Analysis

Signal: $W' \rightarrow WZ$

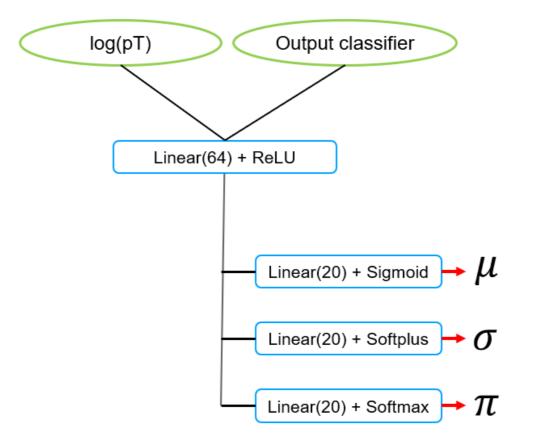
- Truth matched to W
- m(truth jet) > 50 GeV
- Number of b-hadrons = 0

Background: QCD

- Jet is truth-matched
- $p_T(truth jet) > 200 GeV$
- $200 < p_T(jet) < 3000 \text{ GeV}, |\eta(jet)| < 2.0$
- -40 < m(jet) < 300 GeV
- Outline of the analysis: 1) Classifier 2) pre-train adversarial 3) combined train for mass decorrelation

$$\mathcal{L} = w_{clf} \cdot \Sigma_{i \in (s+b)} L_{classifier} + w_{adv} \cdot \lambda \cdot \Sigma_{i \in b} L_{decor}$$

- The adversarial network is a gaussian mixture model that use 20 gaussians to infer the correlation between the output score of the classifier and the mass

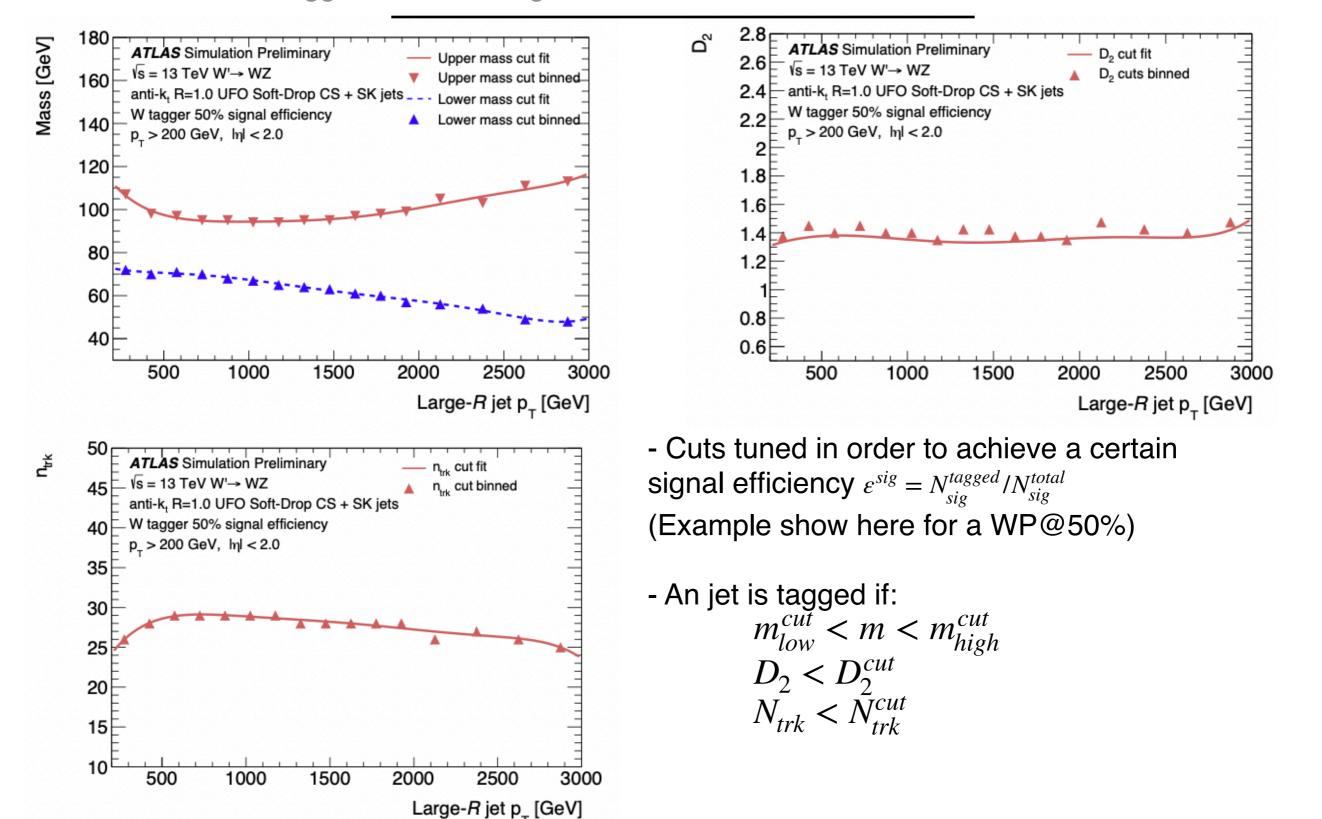


For each Gaussian of 20:

 μ : mean, σ : std., π : norm

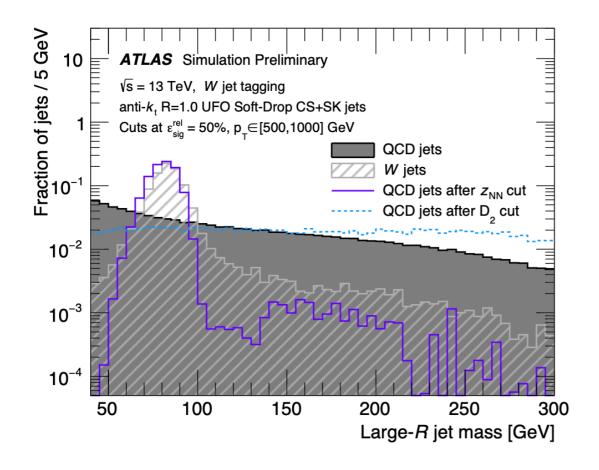
- Two taggers are considered as baseline taggers and are used for comparisons :
 - The "so-called" 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

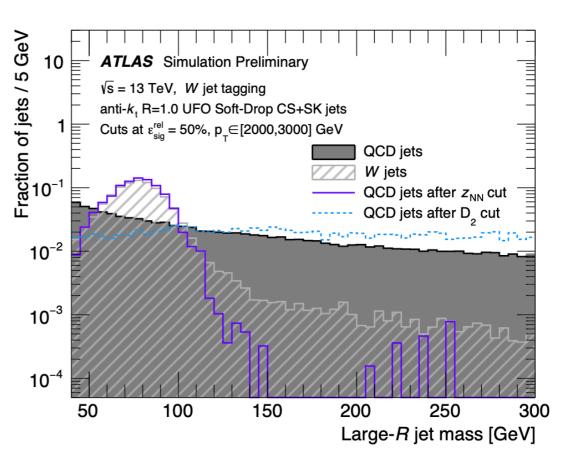
- Two taggers are considered as baseline taggers and are used for comparisons :
 - The "so-called" 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables



- Two taggers are considered as baseline taggers and are used for comparisons :
 - The "so-called" 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables
- High level observables are used as input features for the classifier
- Same strategy as LundNet, classifier then adversarial

Variable	Description
D_2, C_2	Energy correlation ratios
$ au_{21}$	N-subjettiness
$R_2^{ m FW}$	Fox-Wolfram moment
$\mathcal{P}^{}$	Planar flow
a_3	Angularity
\boldsymbol{A}	Aplanarity
$Z_{\mathrm{cut}}, \sqrt{d_{12}}$	Splitting scales
$Kt\Delta R$	k_t -subjet ΔR

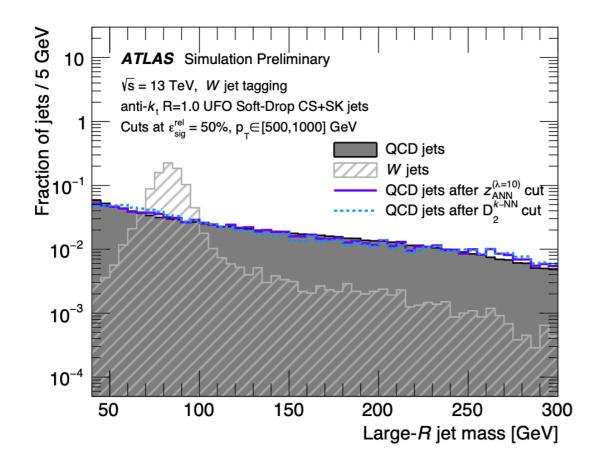


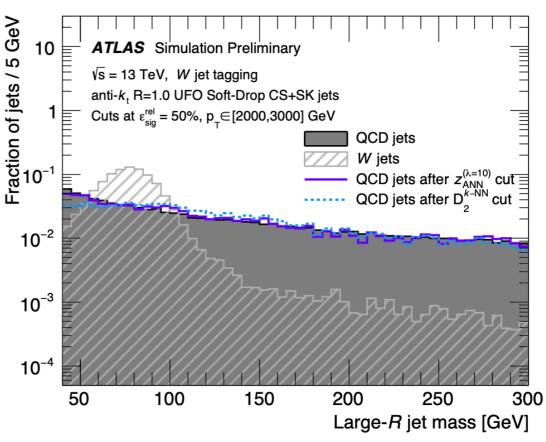


- Two taggers are considered as baseline taggers and are used for comparisons :
 - The "so-called" 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

To decorrelate jet mass and DNN score:

- Apply an additional adversarial neural network (ANN) to the DNN tagger
- ANN trained to infer the jet mass from the DNN score by minimizing $L_{\!ANN}$
- Loss function of the combined training $L_{total}=L_{DNN}-\lambda L_{ANN}$, with λ being chosen with a compromise between the background rejection and the mass decorrelation

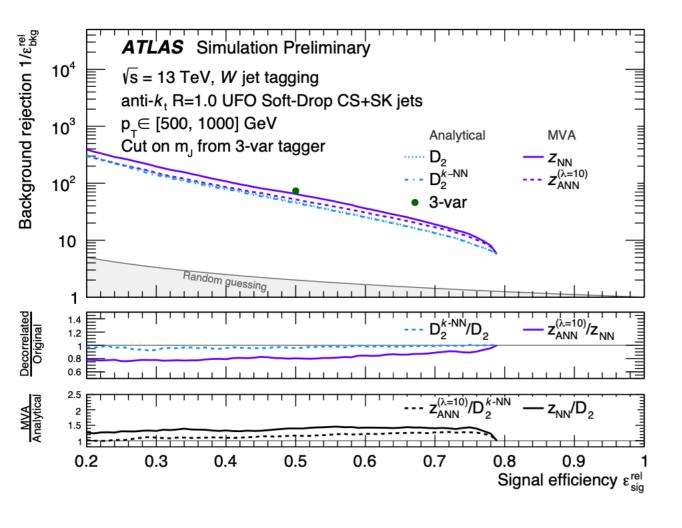


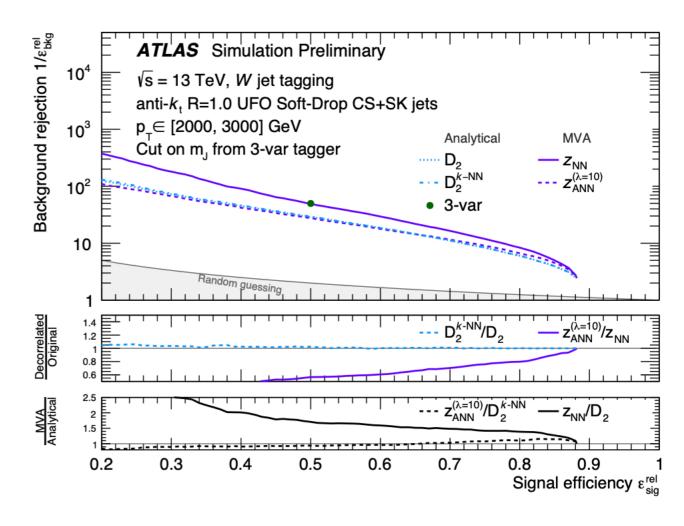


- Two taggers are considered as baseline taggers and are used for comparisons :
 - The "so-called" 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

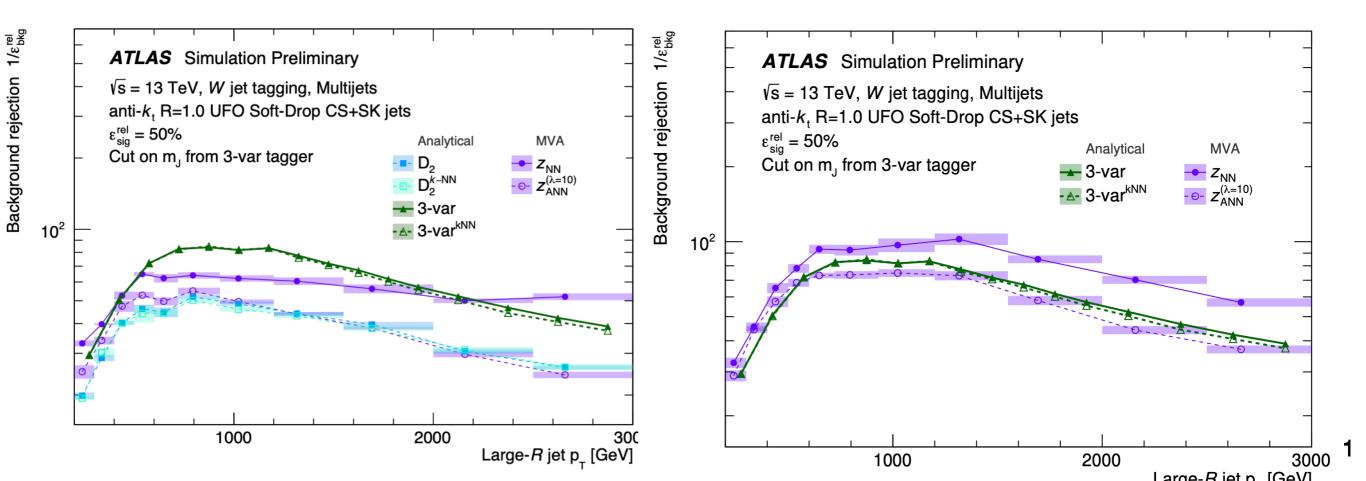
Background rejection rate comparison of W taggers

- DNN tagger (violet solid) shows the best performance
- Decrease in performance after ANN is expected

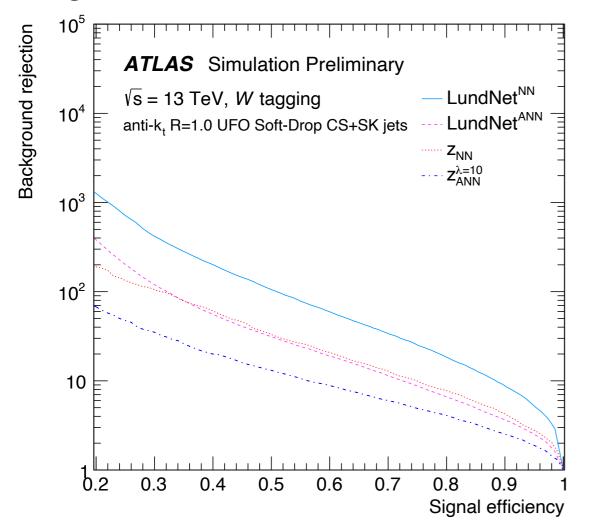


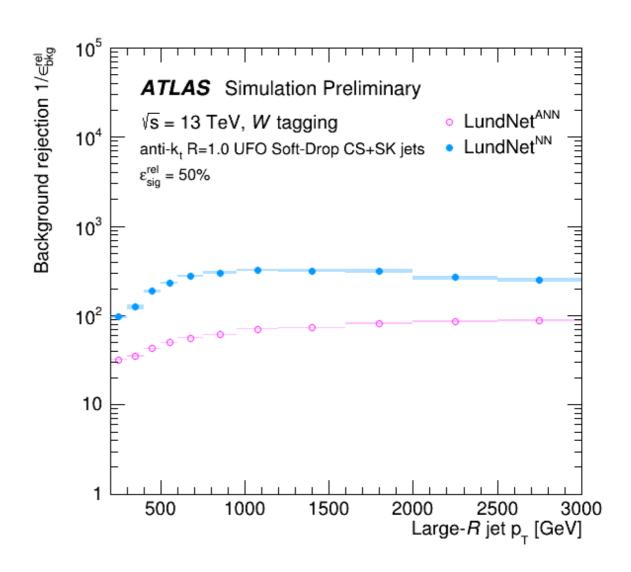


- Two taggers are considered as baseline taggers and are used for comparisons :
 - The "so-called" 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables
- Adding the information on the number of tracks helped in increasing the background rejection
- Previously, the 3-variable tagger showed better performance than DNN
- Now, DNN performing better than the 3-variable cut based tagger, and the ANN is comparable with the 3-variable tagger performance
- Reason: Most other feature exploit the 2 prong behavior of the W/Z decay, whereas the number of tracks is a good quark/gluon discriminator



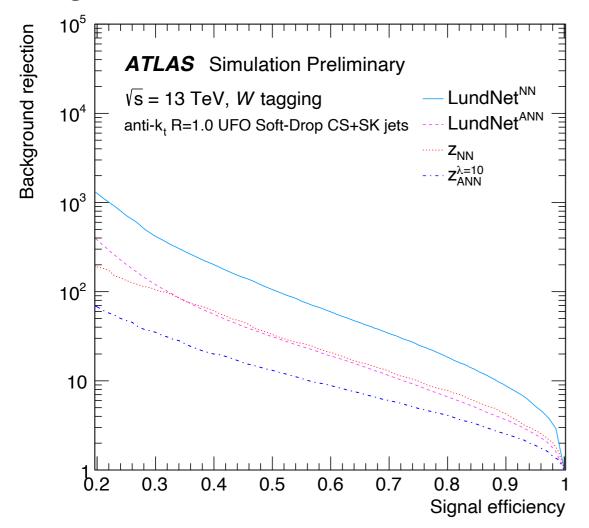
Let's go back to LundNet

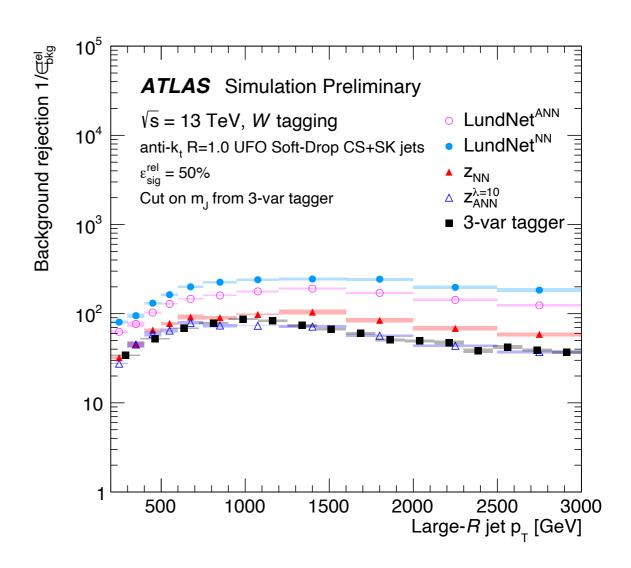




- -The LundNet tagger without mass decorrelation achieves the best performance
- The adversarial network significantly deteriorates performance (for both LundNet and DNN)
- At 50% signal efficiency and with the p_T-dependent 3-var tagger mass cut, the background rejection, after mass decorrelation, is better by a factor of 2.5(3) with respect to the 3-var tagger (baseline ANN tagger)

Let's go back to LundNet



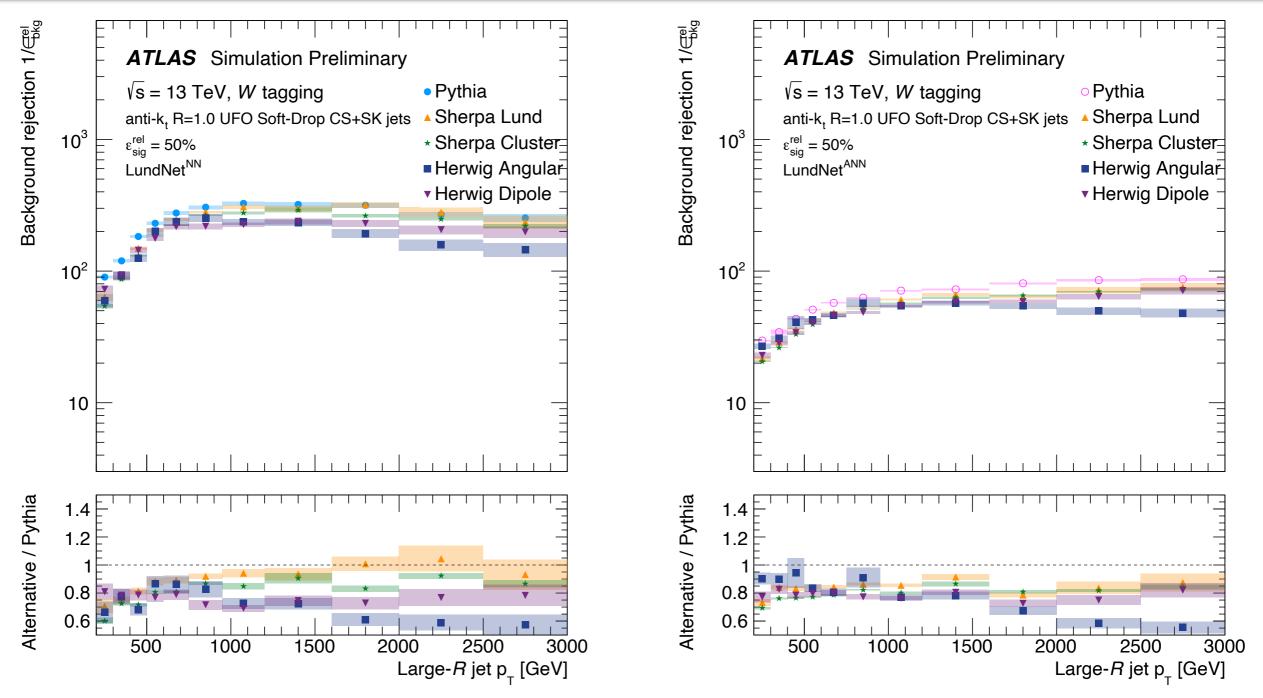


- -The LundNet tagger without mass decorrelation achieves the best performance
- The adversarial network significantly deteriorates performance (for both LundNet and DNN)
- At 50% signal efficiency and with the p_T -dependent 3-var tagger mass cut, the background rejection, after mass decorrelation, is better by a factor of 2.5(3) with respect to the 3-var tagger (baseline ANN tagger)



- Across all p_T ranges:
 - LundNet^{NN} is able to retrieve a peak around the W mass
 - LundNet^{ANN} is able to retrieve the shape of the QCD background
- To quantify the agreement, the KL divergence was calculated:
 - Got values < 1% for both comparison: LundNet NN with signal LundNet ANN with QCD

Backup: results for WP@80%



- The LundNet tagger shows a decrease in background rejection of 20%-40% for 50% working point
- Higher contribution in the region factorizing the hard collinear emission for Sherpa with string model than Sherpa using the cluster model
- Herwig with angle ordered parton shower has a higher contribution from soft collinear emission than Herwig with dipole parton shower.

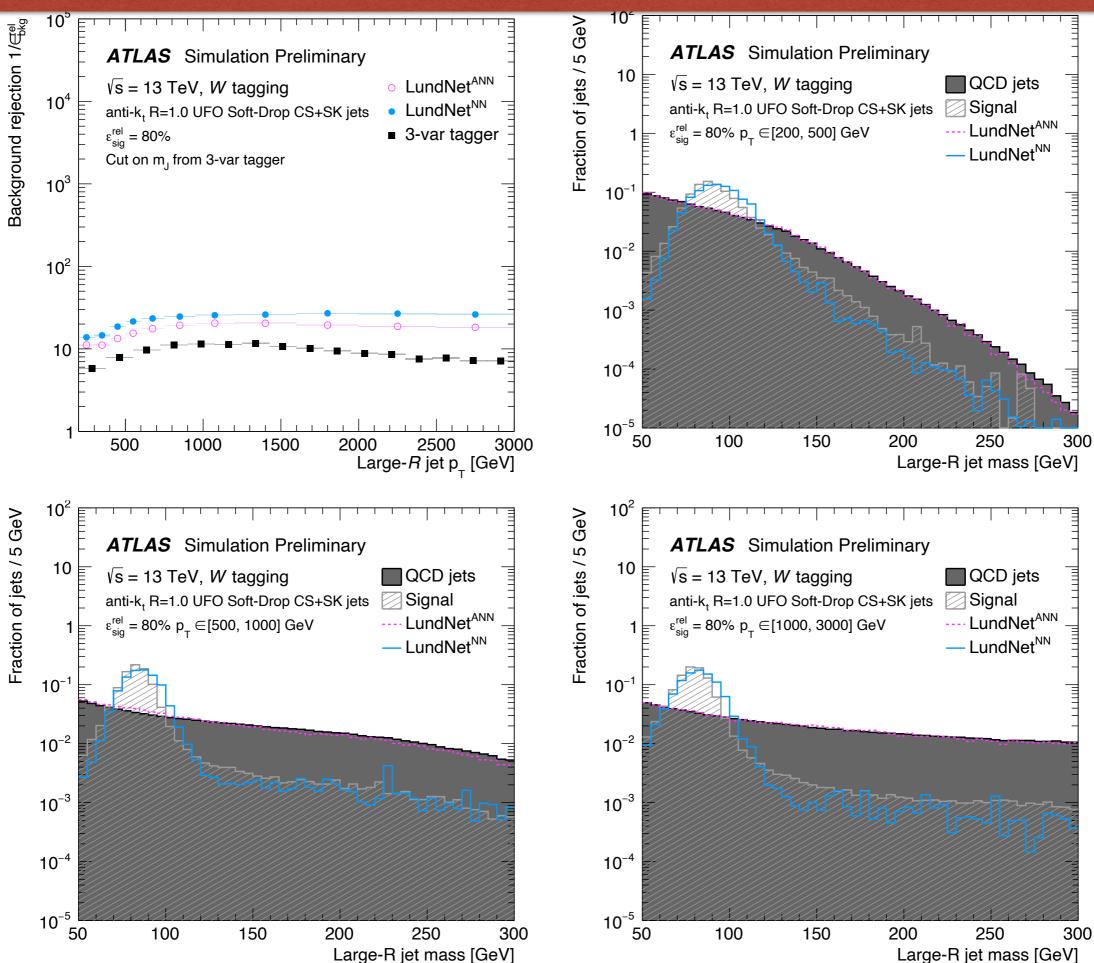
15

Conclusions

- Jets are not just an image, they are a process that can be measured by deconstructing the jet clustering algorithm
- This is the ideal field of applications of a GNN
- Results are better than other methods, but mass sculpting shows up in background peaking at m(W)
- Use of adversarial network solves the issue but reduces performance
- Good mass decorrelation and background rejection in all p_T intervals
- Mass correlated tagger tests using other MC generators result in good background rejection

Backup

Results for WP@80%



Results for WP@80%

