Boosted W tagging with Lund jet planes

Jad M. Sardain on behalf of the ATLAS Collaboration

First Lund Jet Plane Institute, July 3-7 2023
- Heavy states with large momentum will produce multi-prong topology

- Techniques (ML or not) developed in the last 10 years to distinguish the various jet topologies

- Various approaches include:
 - Combine various high-level variables
 - Use low-level constituents
 - Jet images
 - Jet clustering sequence (this talk)
Jet tagging using Lund plane and ML

- The Lund planes for the W, top and QCD jets already looks quite different
 - Convolutional NN used for identification
 - Results not much better than CNN directly on jet images

- However, the Lund plane has much more information coming from the sequence that produced it
 - Use GNN where each node has 3 vars:
 - z momentum fraction of the branching.
 - k_t transverse momentum,
 - Δ emission angle
 - Number of tracks per jet as a global feature to help classification

Signal

Background

W-jet

QCD
LundNet

- Graph neural network by Frédéric Dreyer used to tag Lund planes when represented as graphs. It is currently the state of the art of Lund tagging and inspired by ParticleNet \[\text{arXiv:2012.08526v2 [hep-ph]}\]

- It uses the EdgeConv layer. In summary, for a node \(x_i\), we construct a small fully connected neural network. The input is \(x_j - x_i = [k_{t,j} - k_{t,i}, \Delta_j - \Delta_i, z_j - z_i]^T\) concatenated with \(x_i\), where \(x_j\) is just a node connected to \(x_i\). The output is the edge features, \(e\).

- The EdgeConv block repeats this operation for every node connected to \(x_i\). Then the edge features are aggregated (based on taking the mean) to produce the new node features for \(x_i\).

- LundNet-3 and LundNet-5 are virtually the same model, their difference is the number of Lund variables each node has at the beginning. In our analysis, we only consider LundNet-3.
Signal: $W' \rightarrow WZ$
- Truth matched to W
- $m(\text{truth jet}) > 50$ GeV
- Number of b-hadrons $= 0$

Background: QCD
- Jet is truth-matched
- $p_T(\text{truth jet}) > 200$ GeV
- $200 < p_T(\text{jet}) < 3000$ GeV, $|\eta(\text{jet})| < 2.0$
- $40 < m(\text{jet}) < 300$ GeV

- Outline of the analysis: 1) Classifier 2) pre-train adversarial 3) combined train for mass decorrelation

$$\mathcal{L} = w_{clf} \cdot \sum_{i \in (s+b)} L_{\text{classifier}} + w_{adv} \cdot \lambda \cdot \sum_{i \in b} L_{\text{decor}}$$

- The adversarial network is a gaussian mixture model that use 20 gaussians to infer the correlation between the output score of the classifier and the mass

For each Gaussian of 20:
- μ : mean
- σ : std.
- π : norm
Baseline taggers

- Two taggers are considered as baseline taggers and are used for comparisons:
 - The “so-called” 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables
Baseline taggers

- Two taggers are considered as baseline taggers and are used for comparisons:
 - The “so-called” 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

- Cuts tuned in order to achieve a certain signal efficiency \(\varepsilon^\text{sig} = \frac{N^{\text{tagged}}}{N^{\text{total}}_\text{sig}} \)
 (Example show here for a WP@50%)

- An jet is tagged if:
 \[
 m_{\text{low}}^\text{cut} < m < m_{\text{high}}^\text{cut} \\
 D_2 < D_2^\text{cut} \\
 N_{\text{trk}} < N_{\text{trk}}^\text{cut}
 \]
Baseline taggers

- Two taggers are considered as baseline taggers and are used for comparisons:
 - The “so-called” 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

- High level observables are used as input features for the classifier

- Same strategy as LundNet, classifier then adversarial

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_2, C_2</td>
<td>Energy correlation ratios</td>
</tr>
<tr>
<td>τ_{21}</td>
<td>N-subjettiness</td>
</tr>
<tr>
<td>R^F_2</td>
<td>Fox-Wolfram moment</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>Planar flow</td>
</tr>
<tr>
<td>a_3</td>
<td>Angularity</td>
</tr>
<tr>
<td>A</td>
<td>Aplanarity</td>
</tr>
<tr>
<td>Z_{cut}, $\sqrt{d_{12}}$</td>
<td>Splitting scales</td>
</tr>
<tr>
<td>$K\tau\Delta R$</td>
<td>k_τ-subjet ΔR</td>
</tr>
</tbody>
</table>
Baseline taggers

- Two taggers are considered as baseline taggers and are used for comparisons:
 - The “so-called” 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

To decorrelate jet mass and DNN score:
- Apply an additional adversarial neural network (ANN) to the DNN tagger

- ANN trained to infer the jet mass from the DNN score by minimizing L_{ANN}

- Loss function of the combined training $L_{total} = L_{DNN} - \lambda L_{ANN}$, with λ being chosen with a compromise between the background rejection and the mass decorrelation
Baseline taggers

- Two taggers are considered as baseline taggers and are used for comparisons:
 - The “so-called” 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

Background rejection rate comparison of W taggers

- DNN tagger (violet solid) shows the best performance
- Decrease in performance after ANN is expected

Figure 1:

ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \) TeV, W jet tagging

- anti-\(k_t \), R=1.0 UFO Soft-Drop CS+SK jets
- \(p_T \in [500, 1000] \) GeV
- Cut on \(m_J \) from 3-var tagger

Background rejection rate 1/\(\epsilon_{\text{sig}} \)

<table>
<thead>
<tr>
<th>Analytical</th>
<th>MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_2)</td>
<td>(Z_{\text{NN}})</td>
</tr>
<tr>
<td>(D_2^{\text{NN}})</td>
<td>(Z_{\text{ANN}}^{(x=10)})</td>
</tr>
<tr>
<td>3-var</td>
<td></td>
</tr>
</tbody>
</table>

Background rejection rate 1/\(\epsilon_{\text{sig}} \)

<table>
<thead>
<tr>
<th>Analytical</th>
<th>MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_2^{\text{NN}}/D_2)</td>
<td>(Z_{\text{ANN}}^{(x=10)}/Z_{\text{NN}})</td>
</tr>
<tr>
<td>(D_2^{\text{NN}}/D_2)</td>
<td></td>
</tr>
<tr>
<td>(Z_{\text{ANN}}^{(x=10)}/Z_{\text{NN}})</td>
<td></td>
</tr>
</tbody>
</table>

Signal efficiency \(\epsilon_{\text{rel}} \)

<table>
<thead>
<tr>
<th>MVA</th>
<th>Analytical</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_{\text{ANN}}^{(x=10)}/D_2^{\text{NN}})</td>
<td></td>
</tr>
<tr>
<td>(Z_{\text{ANN}}^{(x=10)}/D_2^{\text{NN}})</td>
<td></td>
</tr>
<tr>
<td>(Z_{\text{NN}}/D_2)</td>
<td></td>
</tr>
</tbody>
</table>

Signal efficiency \(\epsilon_{\text{rel}} \)
Baseline taggers

- Two taggers are considered as baseline taggers and are used for comparisons:
 - The “so-called” 3-var tagger, based on number of tracks, mass and D2
 - The DNN/ANN tagger, based on high level observables

- Adding the information on the number of tracks helped in increasing the background rejection

- Previously, the 3-variable tagger showed better performance than DNN

- Now, DNN performing better than the 3-variable cut based tagger, and the ANN is comparable with the 3-variable tagger performance

- Reason: Most other feature exploit the 2 prong behavior of the W/Z decay, whereas the number of tracks is a good quark/gluon discriminator
Let's go back to LundNet

- The LundNet tagger without mass decorrelation achieves the best performance

- The adversarial network significantly deteriorates performance (for both LundNet and DNN)

- At 50% signal efficiency and with the p_T-dependent 3-var tagger mass cut, the background rejection, after mass decorrelation, is better by a factor of 2.5(3) with respect to the 3-var tagger (baseline ANN tagger)
- The LundNet tagger without mass decorrelation achieves the best performance

- The adversarial network significantly deteriorates performance (for both LundNet and DNN)

- At 50% signal efficiency and with the p_T-dependent 3-var tagger mass cut, the background rejection, after mass decorrelation, is better by a factor of 2.5(3) with respect to the 3-var tagger (baseline ANN tagger)
- Across all p_T ranges:
 - LundNetNN is able to retrieve a peak around the W mass
 - LundNetANN is able to retrieve the shape of the QCD background

- To quantify the agreement, the KL divergence was calculated:
 - Got values < 1% for both comparison:
 LundNetNN with signal
 LundNetANN with QCD

Backup: results for WP@80%
- The LundNet tagger shows a decrease in background rejection of 20%-40% for 50% working point.

- Higher contribution in the region factorizing the hard collinear emission for Sherpa with string model than Sherpa using the cluster model.

- Herwig with angle ordered parton shower has a higher contribution from soft collinear emission than Herwig with dipole parton shower.
- Jets are not just an image, they are a process that can be measured by deconstructing the jet clustering algorithm

- This is the ideal field of applications of a GNN

- Results are better than other methods, but mass sculpting shows up in background peaking at $m(W)$

- Use of adversarial network solves the issue but reduces performance

- Good mass decorrelation and background rejection in all p_T intervals

- Mass correlated tagger tests using other MC generators result in good background rejection
Backup
Results for WP@80%

ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV}, W \) tagging

anti-\(k_t \), \(R=1.0 \) UFO Soft-Drop CS+SK jets

\(\varepsilon_{\text{sig}} = 80\% \)

Cut on \(m_\gamma \) from 3-var tagger

ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV}, W \) tagging

anti-\(k_t \), \(R=1.0 \) UFO Soft-Drop CS+SK jets

\(\varepsilon_{\text{sig}} = 80\% \; p_T \in [200, 500] \text{ GeV} \)

ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV}, W \) tagging

anti-\(k_t \), \(R=1.0 \) UFO Soft-Drop CS+SK jets

\(\varepsilon_{\text{sig}} = 80\% \; p_T \in [500, 1000] \text{ GeV} \)

ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV}, W \) tagging

anti-\(k_t \), \(R=1.0 \) UFO Soft-Drop CS+SK jets

\(\varepsilon_{\text{sig}} = 80\% \; p_T \in [1000, 3000] \text{ GeV} \)
ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV, } W \text{ tagging} \)

anti-\(k_t\), \(R=1.0\) UFO Soft-Drop CS+SK jets

\(\epsilon^{\text{rel}}_{\text{sig}} = 80\% \)

LundNet

\(\text{Background rejection } 1/\epsilon^{\text{rel}}_{\text{bkg}} \)

\(\text{Alternative / Pythia} \)

\(\text{Large-}\(R\) jet \(p_T\) [GeV]}

\(\text{Pythia} \)

\(\text{Sherpa Lund} \)

\(\text{Sherpa Cluster} \)

\(\text{Herwig Angular} \)

\(\text{Herwig Dipole} \)