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Motivation

Your mere presence probably means you know this... but just in case:

study (Lund-plane) tagging performance for “simple” (“1-prong”) objects

hope to get better control than for more complex systems (W /Z/H, t, ...)

many potential pheno applications (BSM searches, VBF, H → gg , ...)
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The tools: Lund planes and trees diagrams
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Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and log k⊥

log kt η = − log tan(θ/2)
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The Lund plane(s) in practice: cluster with Cambridge/Aachen

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

ln kt ≈ zθ

η ≈ ln 1/θ

watch out:
at commensurate angles
details of C/A matter
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The Lund plane(s) representation (3/3)

θi

θj

zi

zj

Ti ≡ {θi , kt,i , zi , ψi ,mi , . . . }

for jets in pp: (similar for ee events)

η = − ln∆R

kt = pt,soft∆R z =
pt,soft
pt,parent

ψ ≡ azimuthal angle

Two different Lund (L) structures
“primary plane”
(follow hard branch)

Lprim ≡ {Ti}
OR

full (de-)clustering tree

Ltree ≡ {T ,Lhard,Lsoft}

Lhard

LsoftLtree

T

Recall: kt > tt,min → perturbative
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Quark/gluon discrimination

Goal: using the Lund declustering info (primary or full-tree)
can we say if a jet is quark- or gluon-initiated?
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Quark v. gluon jets: 0. basic considerations

What is a Quark Jet?
From lunch/dinner discussions

A quark parton

A Born-level quark parton

The initiating quark parton in a final state shower

An eikonal line with baryon number 1/3 
and carrying triplet color charge

A quark operator appearing in a hard matrix element 
in the context of a factorization theorem

A parton-level jet object that has been quark-tagged 
using a soft-safe flavored jet algorithm (automatically 
collinear safe if you sum constituent flavors)

A phase space region (as defined by an unambiguous 
hadronic fiducial cross section measurement) that yields 
an enriched sample of quarks (as interpreted by some 
suitable, though fundamentally ambiguous, criterion)

Ill-Defined

Well-Defined What we mean

What people 

sometimes 

think we mean

Quark 

as adjective

Quark 

as noun

[Les Houches Phys at TeV colliders, 2017]

pedestrian summary

there is no such thing as a
“quark” or a “gluon” jet

well-defined: tagging process
A (“quark-enriched”(∗)) against
process B (“gluon-enriched”(∗))

(∗) ambiguous

Our approach(es)

discuss process-independent
aspects (at least analytically)

probe changes for different
processes
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree

Approach #2

Use pQCD to calculate pq,g (Lprim,tree)

Consider kt ≥ kt,cut to stay perturbative

Resum logs to all orders in αs , up to double logs

▶ Each primary radiation comes with a factor 2αs (kt)CR

π

▶ Each subsidiary radiation comes with a factor 2αs (kt)CA

π

Probabilities: pq,g =
∏

i∈prim
2αs (kti )CF,A

π

∏
i∈others

2αs (kti )CA

π (up to a negligible Sudakov)

The ratio largely cancels: Lprim,tree =
(
CF
CA

)nprim
[C.Frye,A.Larkoski,J.Thaler,1704.06266]

The optimal discriminant is the primary multiplicity i.e. the Iterated SoftDrop multiplicity
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree

Approach #2

Use pQCD to calculate pq,g (Lprim,tree)

Consider kt ≥ kt,cut to stay perturbative

Resum logs to all orders in αs , up to single logs
▶ single logs from “DGLAP” collinear splittings

Pq(Lparent) = Sq(∆prev,∆)
[
P̃qq(z)pq(Lhard)pg (Lsoft) + P̃gq(z)pg (Lhard)pq(Lsoft)

]
pg (Lparent) = Sg (∆prev,∆)

[
P̃gg (z)pg (Lhard)pg (Lsoft) + P̃qg (z)pq(Lhard)pq(Lsoft)

]
▶ some single logs for emissions at commensurate angles

Note: all-order not tractable analytically; we resum any pair of commensurate-angle emissions

▶ running coupling (in the Sudakov)
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Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit θ1 ≫ θ2 ≫ · · · ≫ θn
⇒ ML expected to give the same performance
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ROC: LSTM v. expected likelihood

ROC curves agree
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≡

exact
pure-collinear

[M.Dasgupta,F.Dreyer
G.P.Salam,G.Soyez,

1411.5182]
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Quark v. gluon jets: III. performance

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)
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ROC: Pythia sample

clear performance ordering:

Lund+ML > Lund analytic > ISD
tree > prim

larger gains with no kt cut

Interesting questions:
▶ Analytic approach to NP?
▶ Apply analytics to other systems (W /Z/H, top)
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Quark v. gluon jets, part IV: towards asymptotics

Ares Under Curve:
lower is better
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Idea

Asymptotics towards NLL
αsL = cst, αs → 0 (L → ∞)

Larger αs (lower L)

ML > analytics > nSD
little help beyond primary

Larger αs (lower L)

tree > primary > nSD
ML ≈ analytics

develop accurate
parton-showers for ML
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Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?

One has:

a reference sample A
(e.g. network trained+tested w Pythia)

an alternate sample B
(e.g. network tested w Herwig)

We want (for a given working point)

ζ =

[(
∆εq
⟨εq⟩

)2

+

(
∆εg
⟨εg ⟩

)2
]−1

as large as possible.

(would probably deserve a study on its own)

εq

εg

A B
ζ−1

A B
ζ−1

Less performant
More resilient
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We want (for a given working point)

ζ =

[(
∆εq
⟨εq⟩

)2

+

(
∆εg
⟨εg ⟩

)2
]−1

as large as possible.

(would probably deserve a study on its own)

εq

εg

A B
ζ−1

A B
ζ−1

Less performant
More resilient
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Resilience (2/2)
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performance = εq/
√
εg

working point: kt,cut = 1 GeV, optimal performance (reference: Pythia, hadron+MPI, Z+jet)

3 studies: sample (Z+jet v. dijets), NP effects (hadron v. parton), generator (Pythia v. Herwig)

performance: same ordering as before

resilience: network-based < Lund analytics ≲ nSD
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same, varying kt,cut

for each curve: “standard” trade-off between performance and resilience

Overall: better behaviour for the new Lund-based approaches:

At “large” resilience: better envelope for the Lund analytic approaches
At “small” resilience: ML performance gain pays off
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Comparison to other approaches: ML-based
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▶ small performance gain for Lund

▶ differences might come from details

▶ with PDG-ID: PFN∼Lund≳PNet
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Comparison to other approaches: analytics/shapes
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▶ clear gain from our analytic approach

▶ Different behaviour for shapes

▶ Lund (expectably) better for same info
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Effect of phi (& clustering logs)

Just simple points (partially connected to the

discussion yesterday)

Some gain obtained by including ϕ info

analytics:
appear for commensurate angles
↔ clustering logs
only partially taken into account
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Towards full-event tagging

e+e− → Z → qq̄ v. e+e− → H → gg (
√
s = 125 GeV, no ISR)

PRELIMINARY
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Pythia8.306, s = 125 GeV

ROC curve: Z qq v. H gg

single hemisphere

observed performance:

for reference: g -tag on a single hemisphere

for reference: 2 hemispheres assumed independent

g -tag on both hemispheres

ML on the 2 hemisphere LundNet scores

Lund-Net for the full event

incl. ISR and detector ⇒ further improvement

All in all: significance gain ∼ 12

Clear gain from full-event tagging

Applications to other cases (e.g. at the LHC)?
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Another performance gain

incl. ISR and detector ⇒ further improvement

All in all: significance gain ∼ 12
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Applications to other cases (e.g. at the LHC)?
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Conclusions

1 q/g tagging can be addressed both analytically and with ML tools

rich structures in both cases
overall a detailed degree of understanding emerging
analytic: single-log gives a systematic improvement over ISD multiplicity
deep-learning: Lund-Net shows very good performance (also for W and top tagging)

2 Future directions:

Analytic approach for other cases than q/g?
more complex (e.g. how does one treat the mass resolution for heavy bosons?)

b-jet tagging might be interesting/easier

Towards event-wide tagging
higher accuracy, e.g. through more accurate (parton) showers
improved understanding of non-perturbative contributions
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Final words

Conclusions from a Lund talk at CERN a year ago:

1 Lund diagrams have helped thinking about resummation and MCs
Now they can be reconstructed in practice

They provide a view of a jet/event which mimics angular ordering
They provide a separation between different physical effects

2 Broad spectrum of applications:

Wide range of possible (p)QCD calculations
Main limitation: (non-global) clustering logs; can we apply grooming-like techniques?

Large scope for crafting new observables ((p)QCD calculations, MC devel/validation)
More connections to deep learning, heavy-ion collisions, ...

...

This connects very well to the nice list of talks we have had throughout the week!
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Thanks to all for the participation!
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Backup
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Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm
Main idea: Cambridge(/Aachen) preserves angular ordering

e+e− collisions

1 Cluster with Cambridge (dij = 2(1−cos θij ))

2 For each (de)-clustering j ← j1j2:
η = − ln θ12/2
kt = min(E1,E2) sin θ12
z = min(E1,E2)

E1+E2

ψ ≡ some azimuth,...

Jet in pp

1 Cluster with Cambridge/Aachen (dij = ∆Rij )

2 For each (de)-clustering j ← j1j2:
η = − ln∆R12

kt = min(pt1, pt2)∆R12

z = min(pt1,pt2)
pt1+pt2

ψ ≡ some azimuth,...

Primary Lund plane

Starting from the jet, de-cluster following the “hard branch” (largest E or pt)
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Quark v. gluon jets: III. performance v. others

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)
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Significance: Lund models v. others
nSD
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1(allkt)
1(kt > 1 GeV)

Analytic approach shows gains for kt > 1 GeV
(shapes improve at small εq by adding smaller kt)

ML performance on par with PFN, slightly better
than Particle-Net
(treatment of PDG-ID could maybe be improved)
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