Quarks and gluons in the Lund plane(s)

Gregory Soyez, with Frederic Dreyer, Andrew Lifson, Gavin Salam and Adam Takacs based on arXiv:1807.04758, arXiv:2007.06578 and arXiv:2112.09140

IPhT, CNRS, CEA Saclay

CERN, June 3 2022

Motivation

Your mere presence probably means you know this... but just in case:

- study (Lund-plane) tagging performance for "simple" ("1-prong") objects
- hope to get better control than for more complex systems (W/Z/H, t, ...)
- ullet many potential pheno applications (BSM searches, VBF, H o gg, ...)

The tools: Lund planes and trees diagrams

3 / 22

Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 "log" variables η and log k_{\perp}

 closely follows our beloved angular ordering

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary
 - secondary

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary
 - secondary
 - ...

- closely follows our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary
 - secondary
 - .

The Lund plane(s) representation (3/3)

for jets in pp: (similar for ee events)

$$\eta = -\ln \Delta R$$
 $k_t = p_{t, ext{soft}} \Delta R$ $z = \frac{p_{t, ext{soft}}}{p_{t, ext{parent}}}$ $\psi \equiv ext{azimuthal angle}$

Two different Lund (\mathcal{L}) structures "primary plane" (follow hard branch) OR $\mathcal{L}_{\text{prim}} \equiv \{\mathcal{T}_i\}$ full (de-)clustering tree $\mathcal{L}_{\text{tree}} \equiv \{\mathcal{T}, \mathcal{L}_{\text{hard}}, \mathcal{L}_{\text{soft}}\}$

Recall: $k_t > t_{t, \min} \rightarrow perturbative$

6 / 22

Quark/gluon discrimination

Goal: using the Lund declustering info (primary or full-tree) can we say if a jet is quark- or gluon-initiated?

7 / 22

Quark v. gluon jets: 0. basic considerations

What is a Quark Jet?

From lunch/dinner discussions

A quark parton

A Born-level quark parton

The initiating quark parton in a final state shower

An eikonal line with baryon number 1/3 and carrying triplet color charge

A quark operator appearing in a hard matrix element in the context of a factorization theorem

A parton-level jet object that has been quark-tagged using a soft-safe flavored jet algorithm (automatically collinear safe if you sum constituent flavors)

A phase space region (as defined by an unambiguous hadronic fiducial cross section measurement) that yields an enriched sample of quarks (as interpreted by some suitable, though fundamentally ambiguous, criterion)

[Les Houches Phys at TeV colliders, 2017]

pedestrian summary

- there is no such thing as a "quark" or a "gluon" jet
- well-defined: tagging process
 A ("quark-enriched"(*)) against
 process
 B ("gluon-enriched"(*))
- (*) ambiguous

Our approach(es)

- discuss process-independent aspects (at least analytically)
- probe changes for different processes

Optimal discriminant (Neyman-Pearson lemma)

$$\mathbb{L}_{\mathsf{prim},\mathsf{tree}} = rac{p_g(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}{p_q(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}$$

Optimal discriminant (Neyman–Pearson lemma)

$$\mathbb{L}_{\mathsf{prim},\mathsf{tree}} = rac{
ho_g(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}{
ho_q(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}$$

Approach #1

 $\begin{array}{c} \text{Deep-learn } \mathbb{L}_{\text{prim,tree}} \\ \text{LSTM with } \mathcal{L}_{\text{prim}} \text{ or Lund-Net with } \mathcal{L}_{\text{tree}} \end{array}$

Optimal discriminant (Neyman–Pearson lemma)

$$\mathbb{L}_{\mathsf{prim},\mathsf{tree}} = rac{p_g(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}{p_q(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}$$

Approach #1

 $\begin{array}{c} \text{Deep-learn } \mathbb{L}_{\text{prim,tree}} \\ \text{LSTM with } \mathcal{L}_{\text{prim}} \text{ or Lund-Net with } \mathcal{L}_{\text{tree}} \end{array}$

Approach #2

Use pQCD to calculate $p_{q,g}(\mathcal{L}_{prim,tree})$

- Consider $k_t \ge k_{t,\text{cut}}$ to stay perturbative
- ullet Resum logs to all orders in $lpha_s$, up to double logs
 - Each primary radiation comes with a factor $\frac{2\alpha_s(k_t)C_R}{\pi}$
 - **Each** subsidiary radiation comes with a factor $\frac{2\ddot{\alpha}_s(k_t)C_A}{\pi}$
- ullet Probabilities: $p_{q,g} = \prod_{i \in \mathsf{prim}} rac{2lpha_s(k_{ti})\mathcal{C}_{F,A}}{\pi} \prod_{i \in \mathsf{others}} rac{2lpha_s(k_{ti})\mathcal{C}_A}{\pi}$ (up to a negligible Sudakov)
- The ratio largely cancels: $\mathbb{L}_{\text{prim,tree}} = \left(\frac{C_F}{C_A}\right)^{n_{\text{prim}}}$ [C.Frye,A.Larkoski,J.Thaler,1704.06266]
- The optimal discriminant is the primary multiplicity i.e. the Iterated SoftDrop multiplicity

Optimal discriminant (Neyman-Pearson lemma)

$$\mathbb{L}_{\mathsf{prim},\mathsf{tree}} = rac{p_g(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}{p_q(\mathcal{L}_{\mathsf{prim},\mathsf{tree}})}$$

Approach #1

 $\begin{array}{c} \text{Deep-learn } \mathbb{L}_{\text{prim,tree}} \\ \text{LSTM with } \mathcal{L}_{\text{prim}} \text{ or Lund-Net with } \mathcal{L}_{\text{tree}} \end{array}$

Approach #2

Use pQCD to calculate $p_{q,g}(\mathcal{L}_{prim,tree})$

- Consider $k_t \ge k_{t,cut}$ to stay perturbative
- Resum logs to all orders in α_s , up to single logs
 - single logs from "DGLAP" collinear splittings

$$\begin{split} P_q(\mathcal{L}_{\mathsf{parent}}) &= S_q(\Delta_{\mathsf{prev}}, \Delta) \left[\tilde{P}_{qq}(z) p_q(\mathcal{L}_{\mathsf{hard}}) p_g(\mathcal{L}_{\mathsf{soft}}) + \tilde{P}_{gq}(z) p_g(\mathcal{L}_{\mathsf{hard}}) p_q(\mathcal{L}_{\mathsf{soft}}) \right] \\ p_g(\mathcal{L}_{\mathsf{parent}}) &= S_g(\Delta_{\mathsf{prev}}, \Delta) \left[\tilde{P}_{gg}(z) p_g(\mathcal{L}_{\mathsf{hard}}) p_g(\mathcal{L}_{\mathsf{soft}}) + \tilde{P}_{qg}(z) p_q(\mathcal{L}_{\mathsf{hard}}) p_q(\mathcal{L}_{\mathsf{soft}}) \right] \end{split}$$

- ► some single logs for emissions at commensurate angles

 Note: all-order not tractable analytically; we resum any pair of commensurate-angle emissions
- running coupling (in the Sudakov)

Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

Converges for large-enough networks

Quark v. gluon jets: III. performance

$$pp
ightarrow Zq$$
 v. $pp
ightarrow Zg$ ($p_t \sim 500$ GeV, $R=0.4$)

- clear performance ordering:
 - Lund+ML > Lund analytic > ISD
 - tree > prim

Quark v. gluon jets: III. performance

$$pp
ightarrow Zq$$
 v. $pp
ightarrow Zg$ ($p_t \sim 500$ GeV, $R=0.4$)

- clear performance ordering:
 - Lund+ML > Lund analytic > ISD
 - 2 tree > prim
- larger gains with no k_t cut

Quark v. gluon jets: III. performance

$$pp
ightarrow {\it Zq}$$
 v. $pp
ightarrow {\it Zg}$ $(p_t \sim 500$ GeV, $R=0.4)$

- clear performance ordering:
 - **1** Lund+ML > Lund analytic > ISD
 - 2 tree > prim
- larger gains with no k_t cut
- Interesting questions:
 - Analytic approach to NP?
 - Apply analytics to other systems (W/Z/H, top)

Ares Under Curve: lower is better

gluon rejection: higher is better

Idea

Asymptotics towards NLL $\alpha_s L = \text{cst}, \ \alpha_s \to 0 \ (L \to \infty)$

Ares Under Curve: lower is better

gluon rejection: higher is better

Idea

Asymptotics towards NLL $\alpha_s L = \mathrm{cst}, \ \alpha_s \to 0 \ (L \to \infty)$

Larger α_s (lower L)

 $ML > analytics > n_{SD}$ little help beyond primary

Ares Under Curve: lower is better

gluon rejection: higher is better

Idea

Asymptotics towards NLL $\alpha_s L = \mathrm{cst}, \ \alpha_s \to 0 \ (L \to \infty)$

Larger α_s (lower L)

 $ML > analytics > n_{SD}$ little help beyond primary

Larger α_s (lower L)

tree > primary > n_{SD} ML \approx analytics

Ares Under Curve: lower is better

gluon rejection: higher is better

Idea

Asymptotics towards NLL $\alpha_s L = \mathrm{cst}, \ \alpha_s \to 0 \ (L \to \infty)$

Larger α_s (lower L)

 $ML > analytics > n_{SD}$ little help beyond primary

Larger α_s (lower L)

tree $> primary > n_{SD}$ ML \approx analytics

develop accurate parton-showers for ML

Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?

One has:

- a reference sample A (e.g. network trained+tested w Pythia)
- an alternate sample B (e.g. network tested w Herwig)

We want (for a given working point)

$$\zeta = \left[\left(\frac{\Delta \varepsilon_q}{\langle \varepsilon_q \rangle} \right)^2 + \left(\frac{\Delta \varepsilon_g}{\langle \varepsilon_g \rangle} \right)^2 \right]^{-1}$$

as large as possible.

Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?

One has:

- a reference sample A (e.g. network trained+tested w Pythia)
- an alternate sample B (e.g. network tested w Herwig)

We want (for a given working point)

$$\zeta = \left[\left(\frac{\Delta \varepsilon_q}{\langle \varepsilon_q \rangle} \right)^2 + \left(\frac{\Delta \varepsilon_g}{\langle \varepsilon_g \rangle} \right)^2 \right]^{-1}$$

as large as possible.

Less performant More resilient

(would probably deserve a study on its own)

Resilience (2/2)

- $\bullet \ \ \mathrm{performance} = \varepsilon_q/\sqrt{\varepsilon_{\mathrm{g}}}$
- working point: $k_{t,\text{cut}} = 1 \text{ GeV}$, optimal performance (reference: Pythia, hadron+MPI, Z+jet)
- ullet 3 studies: sample (Z+jet v. dijets), NP effects (hadron v. parton), generator (Pythia v. Herwig)
- performance: same ordering as before
- resilience: network-based < Lund analytics $\lesssim n_{SD}$

Resilience (2/2)

- same, varying $k_{t,cut}$
- for each curve: "standard" trade-off between performance and resilience
- Overall: better behaviour for the new Lund-based approaches:
 - At "large" resilience: better envelope for the Lund analytic approaches
 - At "small" resilience: ML performance gain pays off

Comparison to other approaches: ML-based

Approaches:

- Lund-Net (full tree)
- Particle-flow network
- Energy-flow network

- small performance gain for Lund
- differences might come from details

Comparison to other approaches: ML-based

Approaches:

- Lund-Net (full tree)
- Particle-flow network
- Energy-flow network
- Dashed: with PDG-ID
- Particle-Net
- small performance gain for Lund
- differences might come from details
- with PDG-ID: PFN~Lund≥PNet

Comparison to other approaches: analytics/shapes

Approaches:

- ISD mult (n_{SD})
- Lund (full tree, analytic)

clear gain from our analytic approach

Comparison to other approaches: analytics/shapes

Approaches:

- ISD mult (n_{SD})
- Lund (full tree, analytic)
- width $(\sum_i p_{ti} \Delta R_i)$
- ullet Dashed: use subjets with $k_t > 1$ GeV
- clear gain from our analytic approach
- Different behaviour for shapes
- Lund (expectably) better for same info

Comparison to other approaches: analytics/shapes

Approaches:

- ISD mult (n_{SD})
- Lund (full tree, analytic)
- width $(\sum_i p_{ti} \Delta R_i)$
- EE correlation $(\sum_{i,j} p_{ti} p_{tj} \Delta R_{ij}^{\beta})$
- ullet Dashed: use subjets with $k_t > 1$ GeV
- clear gain from our analytic approach
- Different behaviour for shapes
- Lund (expectably) better for same info

Effect of phi (& clustering logs)

- Just simple points (partially connected to the discussion yesterday)
- ullet Some gain obtained by including ϕ info

$$e^+e^-
ightarrow Z
ightarrow qar{q}$$
 v. $e^+e^-
ightarrow H
ightarrow gg$ $(\sqrt{s}=125$ GeV, no ISR)

observed performance:

• for reference: g-tag on a single hemisphere

$$e^+e^- o Z o qar q$$
 v. $e^+e^- o H o gg$ $(\sqrt s=125$ GeV, no ISR)

- for reference: g-tag on a single hemisphere
- for reference: 2 hemispheres assumed independent

$$e^+e^- o Z o qar q$$
 v. $e^+e^- o H o gg$ $(\sqrt s=125$ GeV, no ISR)

observed performance:

- for reference: g-tag on a single hemisphere
- for reference: 2 hemispheres assumed independent
- g-tag on both hemispheres
 i.e. both jets should be tagged

full event clearly worse that (jet)²

$$e^+e^- o Z o qar q$$
 v. $e^+e^- o H o gg$ $(\sqrt s=125$ GeV, no ISR)

observed performance:

- for reference: g-tag on a single hemisphere
- for reference: 2 hemispheres assumed independent
- g-tag on both hemispheres
- ML on the 2 hemisphere LundNet scores train separately on hard & soft hemispheres use another NN (or MVA) to combine the two

clear performance gain

$$e^+e^- o Z o qar q$$
 v. $e^+e^- o H o gg$ $(\sqrt s=125$ GeV, no ISR)

- for reference: g-tag on a single hemisphere
- for reference: 2 hemispheres assumed independent
- g-tag on both hemispheres
- ML on the 2 hemisphere LundNet scores
- Lund-Net for the full event

$$e^+e^-
ightarrow Z
ightarrow q ar{q}$$
 v. $e^+e^-
ightarrow H
ightarrow gg$ ($\sqrt{s}=125$ GeV, no ISR)

- for reference: g-tag on a single hemisphere
- for reference: 2 hemispheres assumed independent
- g-tag on both hemispheres
- ML on the 2 hemisphere LundNet scores
- Lund-Net for the full event
- incl. ISR and detector ⇒ further improvement

$$e^+e^- o Z o qar q$$
 v. $e^+e^- o H o gg$ $(\sqrt s=125$ GeV, no ISR)

- for reference: g-tag on a single hemisphere
- for reference: 2 hemispheres assumed independent
- g-tag on both hemispheres
- ML on the 2 hemisphere LundNet scores
- Lund-Net for the full event
- incl. ISR and detector ⇒ further improvement
- All in all: significance gain ~ 12

$$e^+e^- o Z o qar q$$
 v. $e^+e^- o H o gg$ $(\sqrt s=125$ GeV, no ISR)

- for reference: g-tag on a single hemisphere
- for reference: 2 hemispheres assumed independent
- g-tag on both hemispheres
- ML on the 2 hemisphere LundNet scores
- Lund-Net for the full event
- incl. ISR and detector ⇒ further improvement
- All in all: significance gain ~ 12
 - Clear gain from full-event tagging
 - Applications to other cases (e.g. at the LHC)?

Conclusions

- q/g tagging can be addressed both analytically and with ML tools
 - rich structures in both cases
 - overall a detailed degree of understanding emerging
 - analytic: single-log gives a systematic improvement over ISD multiplicity
 - \bullet deep-learning: Lund-Net shows very good performance (also for W and top tagging)
- Puture directions:
 - Analytic approach for other cases than q/g? more complex (e.g. how does one treat the mass resolution for heavy bosons?) b-jet tagging might be interesting/easier
 - Towards event-wide tagging
 - higher accuracy, e.g. through more accurate (parton) showers
 - improved understanding of non-perturbative contributions

Final words

Conclusions from a Lund talk at CERN a year ago:

- Lund diagrams have helped thinking about resummation and MCs Now they can be reconstructed in practice
 - They provide a view of a jet/event which mimics angular ordering
 - They provide a separation between different physical effects
- ② Broad spectrum of applications:
 - Wide range of possible (p)QCD calculations
 Main limitation: (non-global) clustering logs; can we apply grooming-like techniques?
 - Large scope for crafting new observables ((p)QCD calculations, MC devel/validation)
 - More connections to deep learning, heavy-ion collisions, ...

...

This connects very well to the nice list of talks we have had throughout the week!

Thanks to all for the participation!

Backup

Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm

Main idea: Cambridge(/Aachen) preserves angular ordering

e^+e^- collisions

- **①** Cluster with Cambridge $(d_{ij} = 2(1-\cos\theta_{ij}))$
- ② For each (de)-clustering $j \leftarrow j_1 j_2$:

$$\begin{split} \eta &= -\ln \theta_{12}/2 \\ k_t &= \min(E_1, E_2) \sin \theta_{12} \\ z &= \frac{\min(E_1, E_2)}{E_1 + E_2} \\ \psi &\equiv \text{some azimuth,...} \end{split}$$

Jet in pp

- ① Cluster with Cambridge/Aachen $(d_{ij} = \Delta R_{ij})$
- ② For each (de)-clustering $j \leftarrow j_1 j_2$:

$$\eta = -\ln \Delta R_{12}$$
 $k_t = \min(p_{t1}, p_{t2}) \Delta R_{12}$
 $z = \frac{\min(p_{t1}, p_{t2})}{p_{t1} + p_{t2}}$
 $\psi \equiv \text{some azimuth,...}$

Primary Lund plane

Starting from the jet, de-cluster following the "hard branch" (largest E or ρ_t)

Quark v. gluon jets: III. performance v. others

$$pp
ightarrow Zq$$
 v. $pp
ightarrow Zg$ ($p_t \sim 500$ GeV, $R=0.4$)

• Analytic approach shows gains for $k_t > 1$ GeV (shapes improve at small ε_q by adding smaller k_t)

Quark v. gluon jets: III. performance v. others

$$pp
ightarrow Zq$$
 v. $pp
ightarrow Zg$ ($p_t \sim 500$ GeV, $R=0.4$)

- Analytic approach shows gains for $k_t > 1$ GeV (shapes improve at small ε_a by adding smaller k_t)
- ML performance on par with PFN, slightly better than Particle-Net (treatment of PDG-ID could maybe be improved)