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Your mere presence probably means you know this... but just in case:
o study (Lund-plane) tagging performance for “simple” (“1-prong”) objects
@ hope to get better control than for more complex systems (W/Z/H, t, ...)

@ many potential pheno applications (BSM searches, VBF, H — gg, ...)
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The tools: Lund planes and trees diagrams
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Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables 77 and log k|
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The Lund plane(s) in practice: cluster with Cambridge/Aachen

larger angles smaller angles
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o closely follows our beloved
angular ordering

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 5/22



The Lund plane(s) in practice: cluster with Cambridge/Aachen

larger angles smaller angles

o closely follows our beloved
angular ordering

@ i.e. mimics partonic cascade
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The Lund plane(s) in practice: cluster with Cambridge/Aachen

larger angles smaller angles In ke = 26
n=Inl/0
[ J
[ J
o closely follows our beloved
angular ordering
@ i.e. mimics partonic cascade °®
@ can be organised in Lund planes e

e primary

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 5/22



The Lund plane(s) in practice: cluster with Cambridge/Aachen

larger angles smaller angles In ke = 26
n=Inl/0
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angular ordering
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The Lund plane(s) in practice: cluster with Cambridge/Aachen
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The Lund plane(s) in practice: cluster with Cambridge/Aachen

~
larger angles smaller angles In ke = 26

n=Inl/0
watch out:

at commensurate angles
details of C/A matter

°
o closely follows our beloved
angular ordering

@ i.e. mimics partonic cascade

@ can be organised in Lund planes o
e primary
e secondary
o ...
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The Lund plane(s) representation (3/3)

Two different Lund (L) structures

“primary plane”
(follow hard branch)

full (de-)clustering tree

OR
Eprim = {77} Etree = {Taﬁhardaﬁsoft}
Ti = {0, ke ziy i, mi, ...} Laren ’_Li]
for jets in pp: (similar for ee events) T [ﬁha/d
n=—InAR T {
ke = Proot AR z = Preoft
Pt parent Recall: k¢ > t¢ min — perturbative

¥ = azimuthal angle

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 6 /22



Quark/gluon discrimination

Goal: using the Lund declustering info (primary or full-tree)
can we say if a jet is quark- or gluon-initiated?
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Quark v. gluon jets: 0. basic considerations

What is a Quark Jet? pedestrian summary

From lunch/dinner discussions @ there is no such thing as a
ll-Defined What people A quark parton “q uark” or a “g| uon” jet
chink we mean A Born-level quark parton o well-defined: tagging process
Quark 4 The initiating quark parton in a final state shower A (“quark-enriched” (*)) against
o e e e process B (“gluon-enriched" ()
A quark operator appearing in a hard matrix element (%) ambiguous
in the context of a factorization theorem v

A parton-level jet object that has been quark-tagged

using a soft-safe flavored jet algorithm (automatically O ur a p proa C h (eS)

collinear safe if you sum constituent flavors)

Quark . .
as adjective A phase space region (as defined by an unambiguous ] d ISCUSS proceSS— In d € p en d ent
| hadronic fiducial cross section measurement) that yields o
4 an enriched sample of quarks (as interpreted by some aSpeCtS (at |eaSt ana Iyt|Ca [ Iy)
Well-Defined ~ What we mean suitable, though fundamentally ambiguous, criterion)

@ probe changes for different

[Les Houches Phys at TeV colliders, 2017] processes
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Quark v. gluon jets: |. approach

Optimal discriminant (Neyman-Pearson lemma)
pg(*cprim,tree)

Lprirmjtree =
prim,tree
pq(ﬁprim,tree)
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Quark v. gluon jets: |. approach

Optimal discriminant (Neyman—Pearson lemma) Approach #1
L. _ pg(»cprim,tree) Deep'|eam I[Jprim,tree
prim, tree = 4pq(£prim,tree) LSTM with Lyrim or Lund-Net with Liree
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Quark v. gluon jets: |. approach

Optimal discriminant (Neyman—Pearson lemma) Approach #1
Lo _ Pg(fcprim,tree) Deep—learn Lprim,tree
prim,tree — Pq(ﬁprim,tree) LSTM with Eprim or Lund-Net with Liree

Approach #2
Use pQCD to calculate pq g(Lprim,tree)
o Consider k; > k¢ oyt to stay perturbative
@ Resum logs to all orders in as, up to double logs

» Each primary radiation comes with a factor M
» Each subsidiary radiation comes with a factor %
ey 2005 (kii) G 205 (ki) C
° PrObabllltles: pq,g - Hieprim W Hieothers % (up to a negligible Sudakov)
E C Nprim
@ The ratio largely cancels: Lprim, tree = (C—Z) [C.Frye,A.Larkoski,J. Thaler,1704.06266]

The optimal discriminant is the primary multiplicity i.e. the lterated SoftDrop multiplicity

= =
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Quark v. gluon jets: |. approach

Optimal discriminant (Neyman-Pearson lemma) Approach #1

L. _ pg(»cprim,tree) Deep'|eam Lprim,tree
prim,tree = Pq(ﬁprim,tree) LSTM with Loprim or Lund-Net with Liree

Approach #2
Use pQCD to calculate pg g(Lprim,tree) —

~
o Consider k; > k¢ oyt to stay perturbative — T
@ Resum logs to all orders in as, up to single logs %
» single logs from “DGLAP" collinear splittings
Pq(»cparent) = Sq(ApreV» A) [ﬁqq(z)pq(ﬁhard)pg(ﬂsoft) + 'ng(z)pg(ﬁhard)pq(['soft)]

Pa(Losrent) = Sg(Bprev, A) [ Pas (2)Ps (Lhara) P (Lsore) + Pas (2)Pa(Lnara )P (Lsott)]
» some single logs for emissions at commensurate angles
Note: all-order not tractable analytically; we resum any pair of commensurate-angle emissions
» running coupling (in the Sudakov)
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Quark v. gluon jets: Il. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit 61 > 02 > --- > 0,
= ML expected to give the same performance
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gluon rejection factor, 1/¢,

o o

ratio to Lund density.
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ROC: LSTM v. expected likelihood

\ \\ == Lund density

L\ N nsp

\ N —=- analytic (prim)
analytic (tree)
Lund+LSTM (prim)
Lund-Net (tree)
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ROC curves agree

Quark v. gluon jets: Il. ML validation

Microjet
exact
pure-collinear
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Quarks, gluons and

[M.Dasgupta,F.Dreyer

G.P.Salam,G.Soyez,
1411.5182]

our analytic discriminant is exact/optimal in the dominant collinear limit 61 > 6 > - --
= ML expected to give the same performance

AUC: network convergence

AUC

0.5
- -
—
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ratio to analytic
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=
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Quark v. gluon jets: Ill. performance

pp — Zg V. pp — Zg (pt ~ 500 GeV, R =0.4)

gluon rejection factor, 1/¢g,
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ROC: Pythia sample
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@ clear performance ordering:

@ Lund+ML > Lund analytic > ISD
O tree > prim
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Quark v. gluon jets: Ill. performance

pp — Zg V. pp — Zg (pt ~ 500 GeV, R =0.4) |
ROC: Pythia sample
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Quark v. gluon jets: Ill. performance

pp — Zg V. pp — Zg (pt ~ 500 GeV, R =0.4) |
ROC: Pythia sample
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Quark v. gluon jets, part IV: towards asymptotics

gluon rejection:
higher is better

Ares Under Curve:
lower is better

Asymptotics towards NLL
asl = cst, as — 0 (L — 0)

AUC: dependence on L = In(Q/k, cut) (fixed asl)
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Gregory Soyez

ratio to Lund-Net ratio to Lund-Net

ratio to Lund-Net

-1
€4, model

better Eg,hna — Net

L=8
a;=0.04

0.1 02 03 04 05 06

0.7 0.8 0.9

02 03 04 05 06 07 08 09 1.

02 03 04 05 06 07 08 09 10

quark efficiency, &4

Quarks, gluons a

CERN,

ne 3 2022

12 / 22



Quark v. gluon jets, part IV: towards asymptotics
Ares Under Curve: gluon rejection:
lower is better higher is better _

Asymptotics towards NLL
AUC: dependence on L = In(Q/ky, cut) (fixed asL) 1.1 aSL = CSt, as — 0 (L — OO)
0.250 X S ‘g 10k - - .
0225 —e-- Lund density g 0.9 L=8
—A&- analytic (prim) —°- 0.8 — N as=0.04
0.200 —v— analytic (tree) o7 €5, model Larger Qg (|ower L)
~#- Lund+LSTM (prim) 206l Ipetter o
0.175 Lund-Net (tree) = o g, Lund — Net )
o 31 02 03 04 05 06 07 08 09 10 ML > ana|yt|c5 > nsp
S o150 - . .
s : little help beyond primary
0.100 °
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0.075 F e*e-, alog(Q/ks ) = 0.32 Kl

all Lund tree declusterings
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2 1.05 =
% 1.00 R — ——— —— — — — = C VR
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Quark v. gluon jets, part IV: towards asymptotics

Ares Under Curve: gluon rejection:
lower is better higher is better CEN
Asymptotics towards NLL
AUC: dependence on L = In(Q/ky, cut) (fixed asL) 11 aSL = CSt, as — 0 (L — OO)
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Quark v. gluon jets, part IV: towards asymptotics

Ares Under Curve: gluon rejection:
lower is better higher is better
Asymptotics towards NLL
AUC: dependence on L = In(Q/kt, cut) (fixed asl) 1.1 aSL = CSt, O[s — 0 (L — OO)
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)

Question: is your tagger resilient to uncontrolled effects?

One has:

@ a reference sample A
(e.g. network trained+tested w Pythia)

€g

@ an alternate sample B
(e.g. network tested w Herwig)

We want (for a given working point)

(B ()]

as large as possible.

(=

(would probably deserve a study on its own)
CERN, June 3 2022 13 / 22
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Question: is your tagger resilient to uncontrolled effects?

One has:

@ a reference sample A
(e.g. network trained+tested w Pythia)

€g

@ an alternate sample B
(e.g. network tested w Herwig)

We want (for a given working point)
C 1

2 271
(e (2
€ €
) "\ ) -
as large as possible. Less performant
More resilient

CERN, June 3 2022

(would probably deserve a study on its own)
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Resilience (2/2)

sample dependence (Z+jet v. dijet) 35 Hadron+MP| V. parton level 3 Pyth|a8 V. HerW|g7
S - T S -
Pythia8, hadron+MPI —@- Lund density Pylh\a8 Zﬂet -Q Lund density Z+jet, hadron+MPI --- Lund denswty

° 500 <p;<550 GeV .g%. nsp = 500 <p <550 GeV .g%. nep = 500 <p;<550 GeV .g%. nsp
2 30} antk(R=04) . analytic (prim) 1 2 30t antk(R=04) g analytic (prim) 2 300 antik(®R=04) _ge. anaiytic (prim) |
g Y e analytic (tree) % Y analytic (tree) g i analytic (iree)
S ~$- Lund+LSTM (prim) b} —#- Lund+LSTM (prim) S —#- Lund+LSTM (prim)
= 25k . —e- Lund-Net (tree) 4 % 251 ® —e- Lund-Net (tree) % 25 ® —e- Lund-Net (tree)
2 + 2 ' 2 ’
o X o L ) ¢ ] g L » i
g 20r ke =1GeV | g 20 Kecut =1 GeV Q2.0 ke =1 GeV
© © ©
E ) £ "o £ o =
£ £ £
o o o
t 15F q t 15F 1 t 15F 1
@ @ @
Q Q (=%

. . L . . 1.0bL . . . . . . 1.0Lt . . . . .

! 02 5 10 20 50 100 0.5 1 2 5 10 20 50 100 1 2 5 10 20 50 100

resilience: {pest resilience: {pest resilience: Cpest

e performance = ¢4/, /24
@ working point: k:cut = 1 GeV, optimal performance (reference: Pythia, hadron+MPI, Z-+iet)

@ 3 studies: sample (Z+jet v. dijets), NP effects (hadron v. parton), generator (Pythia v. Herwig)
@ performance: same ordering as before

@ resilience: network-based < Lund analytics < nsp
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Resilience (2/2)

performance: Mpest (reference)

w
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sample dependence (Z+jet v. dijet)

Pythia8, hadron+MPI —O-
500 < p, <550 GeV  ..[3..

Lund density
Nsp

L & anti-k(R=0.4) _ . analytic (prim) 4
Q\ with y analytic (tree)
N -+ Lund+LSTM (prim)
=0~ Lund-Net (tree) 4

Ink/[1 GeV] cut={-0.5,0,0.5,1,1.5}
or {None,-2,-1.5,-1,-0.5,0,0.5,1,1.5}
filled: kt,cue =1 GeV |

10 20
resilience: {pest

@ same, varying K¢ cut

o for each curve:

o At “large”
o At “small”

performance: Mpest (reference)
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w
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N
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N
=)

=
n

Hadr0n+MPI V. parton level
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Lund density
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analytic (prim) 4
analytic (tree)
Lund+LSTM (prim)
Lund-Net (tree) 4

Ink,/[1 GeV] cut={-0.5,0,0.5,1,1.5}
or {None,-2,-1.5,-1,-0.5,0,0.5,1,1.5}
filled: ke,cut =1 GeV |

resilience: {pest

performance: Mpest (reference)

PythlaS V. HerW|g7

w
n
]

N N w
o 5 o
T T T

=
n
T

Z+jet, RadronsMPI —o-

500 <p<550 GeV .03

anti-k(R =04)
with

Lund denswty
Nsp

- analytic (prim) 4
—— analytic (tree)

~{ Lund+LSTM (prim)
=0 Lund-Net (tree)

Inky/[1 GeV] cut={-0.5,0,0.5,1,1.5}
or {None,-2,-1.5,-1,-0.5,0,0.5,1,1.5}
filled: ke,cur =1 GeV |

50 100

resilience: Cpest

“standard” trade-off between performance and resilience

@ Overall: better behaviour for the new Lund-based approaches:

resilience: better envelope for the Lund analytic approaches
resilience: ML performance gain pays off

CERN, June 3 2022
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Comparison to other approaches: ML-based

Significance: Lund models v. others

4.0 — Lund-Net —— PFN —— EFN |
Approaches:
35¢ 1 @ Lund-Net (full tree)
no k¢ cut
@ o Particle-flow network
=< 301 .
W @ Energy-flow network
[
2 25¢ ]
©
S
=
C V.
220t _
n
15l » small performance gain for Lund
Pythiag, Z +jet » differences might come from details
500 < p: <550 GeV,R=0.4
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
&q
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Comparison to other approaches: ML-based

Significance: Lund models v. others

4.0f— Lund-Net  — PPN — EFN ]
—— Lund-Net(+ID) == PFN-ID —— Particle-Net Approaches:
35fF 2===23 i _
PSS ok o Lund-Net (full tree)
AN E
@ ”l,’J NN o Particle-flow network
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S 'I;l// N @ Energy-flow network
3 U
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g 25r ¥ . @ Dashed: with PDG-ID
©
) .
= i) @ Particle-Net
C /] v
2 2.0r m .
n
’ .
15 il » small performance gain for Lund
: I . .
/ Pythia8, Z+jet » differences might come from details
500 < p: <550 GeV,R=0.4
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Comparison to other approaches: analytics/shapes

Significance: Lund models v. others

ao0f ' : e E
Pythia8, Z+jet L L andNLL /—\pproaches:
500 < p; <550 GeV
3.5 R=04 - @ ISD mult (nsp)
& @ Lund (full tree, analytic)
=z 3.0r ]
W
g ke>1 GeV
ot
c 2.5} .
©
S
b=
= )
2 20F _
n
15t i » clear gain from our analytic approach
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Comparison to other approaches: analytics/shapes

Significance: Lund models v. others

4.0 ) . — N 7
Pythia8, Z+jet s .
5;,0 ' SZ;EG v —— Lund NLL Approaches:
<pe< € —= Ailallk)
3.5 R=04 k> 1Gew [ @ ISD mult (nsp)
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(V] -~
g 25} po -~ j
/ \
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| a ]
2201 N
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15} /I \\ i » clear gain from our analytic approach
i = » Different behaviour for shapes
1
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Comparison to other approaches: analytics/shapes

Significance: Lund models v. others
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Pythia8, Z+jet s0 _
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3.5} R=04 e e | ° mult (nsp)
& 5 @ Lund (full tree, analytic)
30k EECos(k:> 1 GeV) |
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g 25 . o
%’ @ Dashed: use subjets with k; > 1 GeV
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n
15 i » clear gain from our analytic approach
» Different behaviour for shapes
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Effect of phi (& clustering logs)

105 primary declusterings only 105 full declustering tree
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Towards full-event tagging

ete” -Z—qqv.ete” - H— gg (v/s =125 GeV, no ISR) )
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Towards full-event tagging
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Towards full-event tagging

ete” -Z —qgv.ete” - H—gg (v/s = 125 GeV, no ISR) J
ROC curve: Z-qg v. H~gg observed performance:
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SF . . 2
----- (single hemisphere) . .
— b;th hemis;heres Y @ for reference: 2 hemispheres assumed independent
0.2 2
o1 | @ g-tag on both hemispheres
0.05 ] i.e. both jets should be tagged
o .
Y 0.02 : full event clearly worse that (jet)?
0.01 :
0.005 ]
0.002 Lund-Net+ID -
0.001 L " Pythia8.306, VS =125 GeV |

0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
£
9

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 19 / 22



Towards full-event tagging

ete” -Z —qgv.ete” - H—gg (v/s = 125 GeV, no ISR) J

ROC curve: Z-qd v. H-gg observed performance:
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Towards full-event tagging

ete” -Z —qgv.ete” - H—gg

(v/s = 125 GeV, no ISR)

&g

0.2
0.1
0.05

0.02
0.01
0.005

0.002
0.001

ROC curve: Z-qq v. H=»gg

single hemisphere
(single hemisphere)?
both hemispheres
NN(hard+soft hem)
full event %,10.08%),’

(70%,6.26%) 4
s
-

Lund-Net+ID

Pythia8.306, VS = 125 GeV |

0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0

&g

observed performance:

g-tag on both hemispheres

Lund-Net for the full event

for reference: g-tag on a single hemisphere

ML on the 2 hemisphere LundNet scores

for reference: 2 hemispheres assumed independent

Gregory Soyez

Quarks, gluons and Lund plane(s)

CERN, June 3 2022

19 / 22



Towards full-event tagging

ete” -Z—qqv.ete” - H— gg (v/s =125 GeV, no ISR) J
ROC curve: Z-qd v. H-gg observed performance:
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Towards full-event tagging

ete” -Z —qgv.ete” - H—gg (v/s = 125 GeV, no ISR) J

significance: Z-qg v. H-gg observed performance:
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Towards full-event tagging

ete” -Z —qgv.ete” - H—gg (v/s = 125 GeV, no ISR) J
significance: Z-qg v. H-gg observed performance:
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Conclusions

© q/g tagging can be addressed both analytically and with ML tools
e rich structures in both cases
o overall a detailed degree of understanding emerging
e analytic: single-log gives a systematic improvement over ISD multiplicity
o deep-learning: Lund-Net shows very good performance (also for W and top tagging)
@ Future directions:
o Analytic approach for other cases than q/g?
more complex (e.g. how does one treat the mass resolution for heavy bosons?)
b-jet tagging might be interesting/easier
e Towards event-wide tagging
o higher accuracy, e.g. through more accurate (parton) showers
e improved understanding of non-perturbative contributions
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Final words

Conclusions from a Lund talk at CERN a year ago:

© Lund diagrams have helped thinking about resummation and MCs
Now they can be reconstructed in practice

o They provide a view of a jet/event which mimics angular ordering
e They provide a separation between different physical effects

@ Broad spectrum of applications:
e Wide range of possible (p)QCD calculations
Main limitation: (non-global) clustering logs; can we apply grooming-like techniques?

e Large scope for crafting new observables ((p)QCD calculations, MC devel/validation)
e More connections to deep learning, heavy-ion collisions, ...

This connects very well to the nice list of talks we have had throughout the week!
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Thanks to all for the participation!
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Backup
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Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm
Main idea: Cambridge(/Aachen) preserves angular ordering ’

e*e collisions Jetinpp

@ Cluster with Cambridge (d; = 2(1—cos#6;)) @ Cluster with Cambridge/Aachen (d; = AR;)
@ For each (de)-clustering j < jijo: @ For each (de)-clustering j < jijo:
77=—|n912/2 77:—|nAR12
kt = min(E]_, E2) sin 012 kt = min(ptl, th)AR]_2
_ min(E,E) = min(pe1,pe2)
— Ei+E . - pt1+pr2 i
1) = some azimuth,... 1) = some azimuth,...
Lund plane

Starting from the jet, de-cluster following the “hard branch” (largest E or p;)
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Quark v. gluon jets: Ill. performance v. others

pp — Zg v. pp — Zg (pt ~ 500 GeV, R =0.4) J
Significance: Lund models v. others
401 by thias, Z+jet — Nso |
—— Lund NLL
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Quark v. gluon jets: Ill. performance v. others

pp — Zg v. pp — Zg (pt ~ 500 GeV, R =0.4) J
Significance: Lund models v. others
4.0f— LundNet  — PN — EFN
== Lund-Net(+ID) == PFN-ID —~ Particle-Net
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e | 2N
3300 #7 | @ Analytic approach shows gains for k; > 1 GeV
- "
% sl ”,”I (shapes improve at small 4 by adding smaller k;)
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= /) . .
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} Pythiag, Z+jet (treatment of PDG-ID could maybe be improved)
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