

EDMS 2866091

PS Booster magnets Task Force

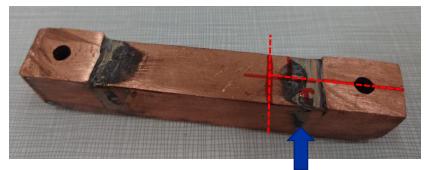
Today's understanding of the failure modes

- Summary of the inspections carried out to date
- o Illustration of the experimental approach
- First outcomes, commonalty of phenomena
- o Next steps

Meeting 1 – 21.03.2023 – Subtask-2: Analysis and understanding of the failure modes Stefano Sgobba and Ana Teresa Perez

Summary of the inspections carried out to date

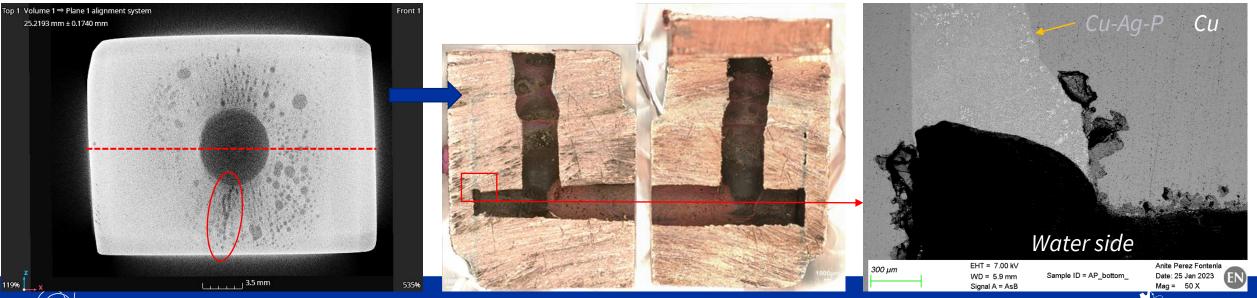
- Sample #1: Non-leaking joint from PSB main **quadrupole** operated during 50 years
- Sample #2: Non-leaking joint from PSB main quadrupole commissioned and operated only 2 weeks in 2022
- Sample #3: Non-leaking joint from PSB bending **dipole** installed until LS2 from another supplier


Experimental approach

- Sequence of non-destructive examinations by computed microtomography (CT)
- Aiming at judging (qualitatively) the overall soundness of the brazed joint, identify possible incipient leak paths and select the cutting planes
- Followed by destructive examinations, microscopic observations and microanalysis

Sample #1: Non-leaking joint From PSB main quadrupole 50 years in service EDMS <u>2817755</u>

Inspection procedure:

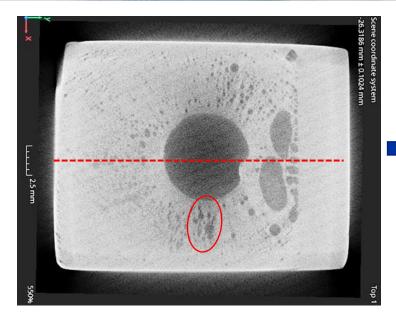

- 1. NDT \rightarrow Definition of the cutting plane/s based on CTresults
- 2. Dry cutting \rightarrow To avoid exogenous contamination
- 3. Chemical analysis and microscopic examination
- 4. Mechanical polishing \rightarrow To assess the brazed interfaces status

Summary of observations:

- 1. NDT (voxel size= 21 μm)
 - Brazing interfaces present numerous cavities and discontinuities
 - Radially aligned features are clearly visible
- 2. Chemical analysis:

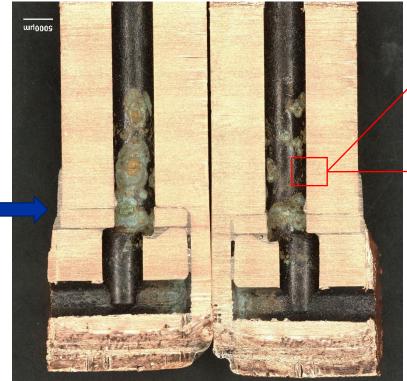
•

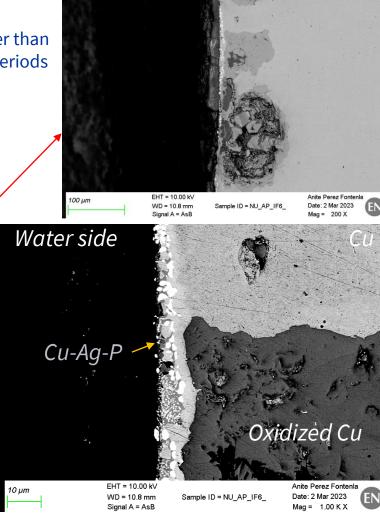
- Cu-Ag-P braze metal is confirmed and Cd traces (?) were detected punctually
- S is univocally present locally on the corrosion products (up to 5.5 wt. %)
- 3. Microscopic examination:
 - The bulk Cu is attacked and large gaps are visible at the vicinity of the brazing alloy
 - The oxidation of the Cu phase within the braze material varies depending on the area
 - It is likely that the Cu has been selectively corroded due to galvanic corrosion phenomena



2023-03-21 Subtask-2: Analysis and understanding of the failure modes - S. Sgobba, A.T. Perez - EN-MME-MM

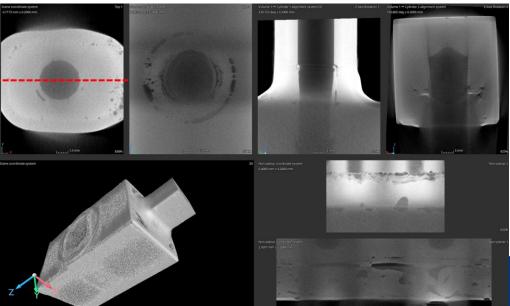
DEPARTMENT


Sample #2: Non-leaking joint From PSB main quadrupole 2 weeks in service (2022) EDMS <u>2855110</u>

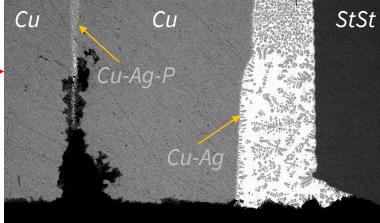


Summary of observations:

- 1. NDT (voxel size= $21 \mu m$):
 - Brazing interfaces present numerous cavities and discontinuities
 - Radially aligned features are slightly visible
- 2. Chemical analysis:
 - Traces of "S" well below 1 wt. % → much lower than samples that have been in service for longer periods
- 3. Microscopic examination:
 - Same type of corrosion phenomena
 - Lower progression



Sample #3: Non-leaking joint From PSB bending dipole Installed until LS2 EDMS under preparation



Summary of observations:

- 1. NDT (voxel size= $40 \mu m$):
 - Brazing interfaces present numerous cavities and discontinuities
- 2. Chemical analysis:
 - "S" (up to 5.5 wt. %)
- 3. Microscopic examination:
 - Same corrosion phenomena
 - Cu-Cu joints (Cu-Ag-P brazing) highly affected
 - Cu-StSt joint (Cu-Ag brazing) less affected

EHT = 20.00 kV

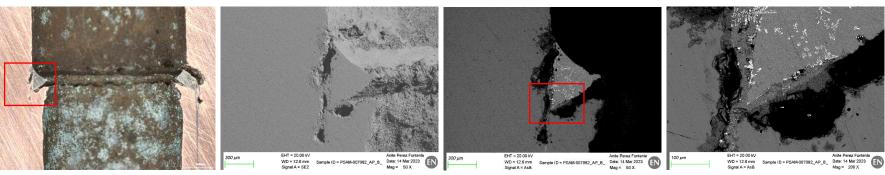
ND = 12.1 mm

Signal A = AsB

300 µn

Water side

Sample ID = PSAM-007082 AP B

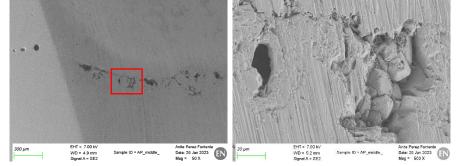

Anite Perez Fontenla

Date: 14 Mar 2023

Mag = 50 X

Summary

 The state of various non-leaking brazed joints from the PSB cooling circuit were investigated via NDT and microscopic means;



What was observed?

- Corrosion selectively attacks Cu at the interface with the braze and the Cu within the braze metal;
- As corrosion progresses, the Cu grain structure is revealed and in some sites a large gap is formed;
- Phenomena practically not visible associated to Cu-Ag braze alloy used to join the Cu with StSt;
- Evidence of "S" within the corrosion products is confirmed in higher or lower (traces) amount depending on service time. The origin of the "S" contamination is unclear for the moment;

What is known?

- Examples of Cu-Ag-P brazed joints presenting similar corrosion were found in papers about transformers and tap water ducts. In those cases sulphide-containing species in the water was reported as the main cause of the attack;
- Brazed joints fabricated from a high-Ag filler, that contained no "P", exhibited no corrosion when exposed to the same sulphide environment;
- Material providers state in their technical data sheets the suitability of the Cu-Ag-P braze for the Cu-Cu joints but remark the importance to avoid exposure to "S" compounds;
- Effect of T on corrosion rate measured for several environments

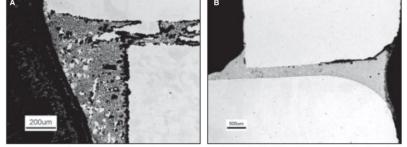
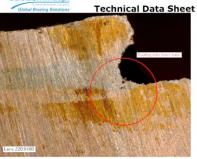
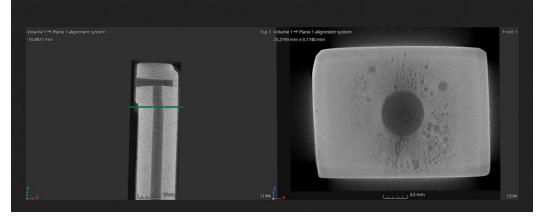
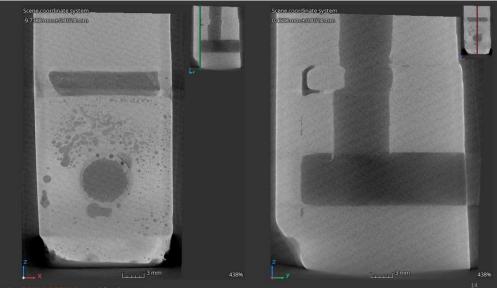



Fig. 4 — Cross-sectional views of damaged brazed joints. A — Severe interfacial attack and attack within the braze; B — severe interfacial attack from the or side with limited interfacial and braze metal attack from the water passage.

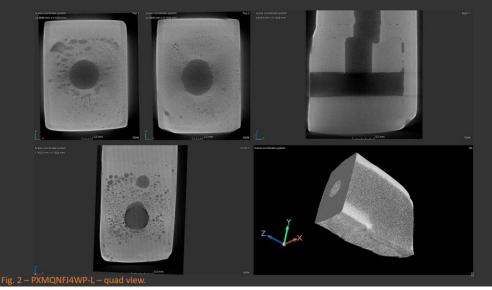

2023-03-21 Subtask-2: Analysis and understanding of the failure modes - S. Sgobba, A.T. Perez - EN-MME-MM

re 1 Erosion of Sil-Fos into Copper base in

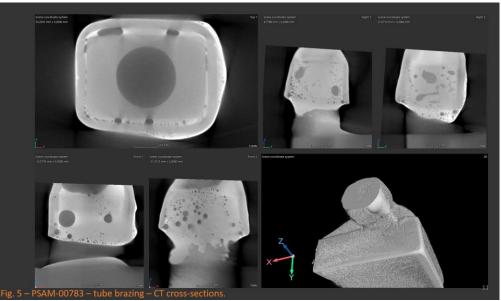

Poor quality of the brazed joints

• Aggravating factor?

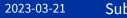
Sample #1



Additional samples (tests ongoing)



g. 8 – PSAM-007338 L – side views



Sample #3

Subtask-2: Analysis and understanding of the failure modes - S. Sgobba, A.T. Perez - EN-MME-MM

Summary

Sample #1

Sample #2

Sample #3

ditional samples

<u>2847250</u>

	PXMQNFJ4WP-B2000017 @				
	Sample #1	Sample #2	Sample #3	Additional samples	A
Sample from	PSB main quadrupole	PSB main quadrupole	PSB bending dipole	PSB main quadrupole	Drigine/Date:\6\/<-\1
Time in service	50 years	2 weeks	Until LS2	Until LS2 ??	
Status	Non-leaking				J.
Interface aspect	Bulk Cu selectively attacked			-	-
Sulphur content	Up to 5.5 wt. %	Below 1 wt. %	Up to 5.5 wt. %	-	St.

2824484

2855110

CT reports

Microscopy reports

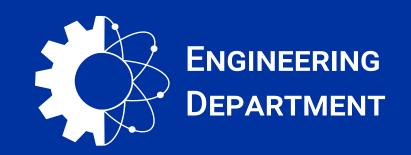
2817755

Subtask-2: Analysis and understanding of the failure modes - S. Sgobba, A.T. Perez - EN-MME-MM

2825737

Under preparation

First outcomes, commonalty of phenomena


- $_{\odot}~$ Selective corrosion of the Cu at the interface with the braze metal
- $_{\odot}~$ As above, of the Cu-rich phases within the braze metal
- Galvanic effects, crevice corrosion phenomena
- \circ Effect of the filler
- Aggravating factors: sulphide-induced events?
- $_{\odot}~$ Poor quality of the brazed joints

Next steps:

- Three additional non-leaking samples from main quadrupole already inspected by CT;
- Cutting and microscopic inspection will follow with identical procedure to gain understanding of the corrosion mechanism and have more statistics about the joints state

