Voltage transient simulations of the LHC main dipoles

Marvin Janitschke, TE-MPE-PE, DOCT

Acknowledgements: Special thanks to: E. Ravaioli, C. Wiesner, M. Wozniak, M. Bednarek, R.G. Saederup and all colleagues involved in the LHC FPA snapshot tests

Bundesministerium für Bildung und Forschung

Gentner scholarship

Main dipole LHC circuit

Each circuit consists of:

- 154 MB dipoles @
- 13 kA power converter (PC) ©
- Bus-bars between magnets (3)

- Current leads, sensing devices and earth fault systems @

Protection

- Protection by-pass diodes ©
- Protective parallel resistors ©
- 4x Quench heater per magnet aperture
- 2x Energy extraction systems for protection (EE) \odot

LHC main dipole magnet

8

6 5 5 6 Magnetic field [T]

2

Parameter	Value	Unit
Length	14.3	m
Operating temperature	1.9	K
Nominal field	8.33	Т
Current at nominal field	11850	А
Inductance at nominal field	98.7	mH
Stored energy at nominal field	1.3	GJ
Inner coil diameter	56	mm

(CERN))
N

Quench detection systems

- Quenches in the main dipoles are detected in 2 ways:

 $U_{QS,0} = U_{Ap,1} - U_{Ap,2}$

If $U_{QS,0} > 100$ mV: Quench detected!

Problem: Symmetric quench!

Comparing voltages across 4 adjacent magnets: nQPS

If voltage across a full magnet differs from its reference: \rightarrow Quench detected

Usual transient in main dipole circuit

Event	Name	Time
1.	Quench detection	~ -10 ms
2.	Fast Power Abort	~ 0 s
3.	Opening of the first energy extraction (middle of chain)	~ 100 ms
4.	Opening of the second energy extraction (end of chain)	~ 600 ms
5.	End of discharge	~ 350-400 s

Initial quench

Subsequent quenches due to:

- Gaseous helium propagation
- Spurious triggering of quench protection

· - · · ·

Usual transient in Main dipole circuit

After each switch opening (PC, EE1, EE2) we observe voltage waves travelling through the magnet → Exponentially decaying wave seeing a different phase shift at each magnet + Further phenomena like superposition/ reflection etc.

6

Typical examples of the $U_{QS,0}$ signal

Flat signal with only very little bumps Expected, as magnet apertures are supposingly identical

Other recorded $U_{0S,0}$ signals

Bumps sometimes even shortly cross QDS thresholds \rightarrow potential spurious triggering Indicate impedance differences between the apertures

More examples can be found: MP3 day 2022, 01.12.2022, E. Ravaioli & M. Janitschke: FPA tests: Results and plans for the future

impedance

Unexplained behavior: Unbalanced dipole impedance

Expected $U_{QS,0}$ voltage signals from simulations

10/02/2023

8

Unexplained behavior: Unbalanced dipole impedance

Measured $U_{QS,0}$ voltage signals

9

Modelling of the magnets – so far

- In case of no quench, the circuit behavior can be captured relatively precisely by a pure electrical model, utilizing ideal inductors \rightarrow Simulation in SPICE

- In order to account for the unbalanced impedance, the magnet model got replaced
- → Instead of pure inductors, each aperture is split up into two inductors, one bridged by a resistor

E. Ravaioli, K. Dahlerup-Petersen, F. Formenti, J. Steckert, H. Thiesen, A. Verweij, "Modeling of the Voltage Waves in the LHC Main Dipole Circuits", <u>IEEE Trans. Appl. SC, Vol 22, June 2012</u>, DOI: 10.1109/TASC.2011.2176306.

Modelling of the magnets – so far

E. Ravaioli, K. Dahlerup-Petersen, F. Formenti, J. Steckert, H. Thiesen, A. Verweij, "Modeling of the Voltage Waves in the LHC Main Dipole Circuits", <u>IEEE Trans. Appl. SC, Vol 22, June 2012</u>, DOI: 10.1109/TASC.2011.2176306.

The beam-screen and its effects

- Included in the magnet to protect the coils from particle and radiation impact
- **1 mm of steel** and **~75 μm** of co-laminated **copper**

Previous investigations showed: Strong correlation between the unbalanced impedance and beam screen surface resistance

R.G. Saederup, "Local Transfer Function Measurement (TFM) Data Analysis", edms 2675917

12

Outer layer with lower purity

10/02/2023

Main dipole – the new model

The eddy current effect is taken into account with coupling loops consisting of R_{ec} , L_{ec} and are mutually coupled with M_{ec} to the magnets main inductances

 $\frac{\mu_{\rm b}^2 \delta^2 \left[1 - \exp\left(\delta J\right)\right]}{\mu_0 \pi t_{\rm b} (d_{\rm b} - t_{\rm b}) l_{\rm m}} \qquad [{\rm H}] \,.$

[H]

- t_b copper layer thickness
- d_b diameter of beam screen
- l_m length of the magnet
- δ characteristic skin depth
- $\rho_b(RRR, T, B)$ resistivity of copper
- $f_{m,ec}$ magnet transfer function on the beam screen

Derivation only requires measured values

$U_{QS,0}\,\text{of}$ an FPA @ $2\,kA$ w/ 10A/s ramp

U_{QS,0} of an FPA @ 11 kA w/ 10A/s ramp

10/02/2023

High current

U_{QS,0} of an FPA @ 11 kA w/ 10A/s ramp

High current

The beam-screen effect can also be seen and reproduced in the frequency domain

Transfer Function Measurements with the beamscreen at:

- 1. 20 K
- 2. 30 K
- 3. 40 K

The introduced impedance differences can be accurately reproduced

19

10/02/2023

Conclusion

Further analysis of the beam-screen surface resistances showed a significant spread in purity and thickness of the different copper layers of the beam-screen → Novel electrical network model of the main dipole

2011 equivalent model	2022 equivalent model	
Good accuracy	Good accuracy	
Empirical (not physics-driven)	Physics-driven	
	Predictive for various events	
Predictive only for FPA	Able to predict new magnet's behavior (?)	
	Possible to add a short circuit to the model	
Not easily scaled	Scaled with current	
Not easily expandable	Expandable with other effects	
	Expandable to frequency behaviour	
Practical	Difficult to develop Courtesy to E. Ravaioli	

Thanks a lot for your attention! ③

Appendix

10/02/2023

LHC main dipole magnet (MB)

LHC main dipole magnet

Parameter	Value	Unit
Length	14.3	m
Operating temperature	1.9	K
Nominal field	8.33	Т
Current at nominal field	11850	А
Inductance at nominal field	98.7	mH
Stored energy at nominal field	1.3	GJ
Inner coil diameter	56	mm

Parameter	Value	Unit
Number of turns	320	-
Number of strands per turn	28/36	-
Number of filaments per strand	8900/6500	-
Critical current @ 10 T, 1.9 K	13.75	kA

Data from Butting (2003/2004) – Random example

Material	ρ(T= 293 K) [Ωm]	ρ(T= 77 K) [Ωm]	ρ(T= 4.2 K) [Ωm]
Copper (RRR = 146)	1.7e-8	2.0e-9	1.06e-10
Copper (RRR = 81)	1.7e-8	2.1e-9	1.92e-10
Steel	6.8e-7	5.3e-7	5.0e-7

$$R_s = \Delta U \frac{w}{l * I}, l = 1 \text{ A}$$

CERN acceptance criteria $R_s < 3.5 \ \mu\Omega$

RRR and t_{Cu} were not included (?)

Now inserting all values from above (Butting) yields:

 $\Delta U = R_s \frac{\iota}{w} I = \frac{\rho * \iota}{t * w} I \qquad \qquad R_s = \frac{\rho}{t}$ Correction for Stainless-Steel at 293 K: $I_{Cu} = \frac{R_{Cu}R_{SS}}{R_{Cu} + R_{CC}} * \frac{1}{R_{Cu}}$ R_{Cu} Calculated voltages based on provided $\rho(RRR,T)$, w, l, t_{Cu} U @293 K [V] U @77 K [V] U @4.2 K [V] Specimen Error to tages R_{SS} P. 5358 0.0000482 0.0059 0.00086_{3}° $I = I_{Cu}$ P. 5399 0.0000872_{2}° 0.0009220% 0.0060^{30}

New approach – multi-layered copper

Inner layer with higher purity

Outer layer with lower purity

U_{QS,0} of an FPA @ 11 kA w/ 10A/s ramp

Modelling results from 2011

High current

Modelling result - Examples

10/02/2023

Voltages across the magnet

Conclusion

- Previous modelling approaches of the main dipole were **not** able to reproduce the unbalanced dipole behavior at **all** current level
- Past investigations showed a strong correlation of beam-screen surface resistances and unbalancedness
- → Further analysis of the surface resistances shows a significant spread in purity and thickness of the different copper layers of the beam-screen
- These measured parameters were utilized in a novel model, which couples the magnet's main inductance to the induced eddy currents loops in the beam-screen
- The results indicate to agree with measurements on low- as well as on high current levels
- → Still work in progress to continue analyzing other parameters in the process in order to improve the fit
- The results and the model can also be used in the frequency domain, to reproduce Transfer Functions measured of the magnet → to be shown soon

The outliers

What is going on here?

Can we model this? And if so, what could it be?

The outliers

What is going on here?

Can we model this? And if so, what could it be?

The outliers

R.G. Saederup, "Local Transfer Function Measurement (TFM) Data Analysis", edms 2675917

